Displaying 1-10 of 361 results found.
page
1
2
3
4
5
6
7
8
9
10
... 37
Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<= A003056(n)).
+20
272
1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1.. A003056(n).
+20
16
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<= A003056(n).
+20
16
1, 0, 1, 1, 1, 2, 1, 1, 3, 4, 1, 6, 7, 3, 11, 16, 4, 1, 22, 29, 12, 1, 42, 60, 23, 3, 82, 120, 47, 7, 161, 238, 100, 12, 1, 316, 479, 198, 30, 1, 624, 956, 404, 61, 3, 1235, 1910, 818, 126, 7, 2449, 3817, 1652, 258, 16, 4864, 7633, 3319, 537, 30, 1, 9676, 15252, 6686, 1083, 70, 1, 19267, 30491, 13426, 2205
Number T(n,k) of endofunctions on [n] with cycles of k distinct lengths; triangle T(n,k), n>=0, 0<=k<= A003056(n), read by rows.
+20
14
1, 0, 1, 0, 4, 0, 24, 3, 0, 206, 50, 0, 2300, 825, 0, 31742, 14794, 120, 0, 522466, 294987, 6090, 0, 9996478, 6547946, 232792, 0, 218088504, 160994565, 8337420, 0, 5344652492, 4355845868, 299350440, 151200, 0, 145386399554, 128831993037, 11074483860, 18794160
Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<= A003056(n), read by rows.
+20
14
1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<= A003056(n), read by rows.
+20
14
1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 2, 0, 7, 5, 0, 11, 9, 1, 0, 15, 17, 2, 0, 22, 28, 5, 0, 30, 47, 10, 0, 42, 74, 21, 1, 0, 56, 116, 37, 2, 0, 77, 175, 67, 5, 0, 101, 263, 112, 10, 0, 135, 385, 187, 20, 0, 176, 560, 302, 40, 1, 0, 231, 800, 479, 72, 2, 0, 297, 1135, 741, 127, 5
COMMENTS
T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A003056(n). T(n,k) = 0 for k > A003056(n).
1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<= A003056(n), read by rows.
+20
12
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<= A003056(n). T(n,k) = 0 for k> A003056(n).
Recursion counts for summation table A003056 with formula a(y,0) = y, a(y,x) = a((y XOR x),2*(y AND x)).
+20
9
0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 1, 3, 3, 2, 2, 3, 3, 1, 0, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0
COMMENTS
Count the summation table A003056 with recursive formula based on identity A+B = (A XOR B)+ 2*(A AND B) given by Schroeppel and then this table gives the number of recursion steps to get the final result.
Number T(n,k) of compositions of n such that the set of parts is [k]; triangle T(n,k), n>=0, 0<=k<= A003056(n), read by rows.
+20
8
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 7, 0, 1, 11, 6, 0, 1, 20, 12, 0, 1, 32, 32, 0, 1, 54, 72, 0, 1, 87, 152, 24, 0, 1, 143, 311, 60, 0, 1, 231, 625, 180, 0, 1, 376, 1225, 450, 0, 1, 608, 2378, 1116, 0, 1, 986, 4566, 2544, 120, 0, 1, 1595, 8700, 5752, 360
CROSSREFS
Cf. A000124, A000142, A000217, A000290, A001710, A003056, A008289, A332721, A371417, A373305, A373306.
Search completed in 0.208 seconds
|