[go: up one dir, main page]

login
Search: a003056 -id:a003056
     Sort: relevance | references | number | modified | created      Format: long | short | data
Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<=A003056(n)).
+20
272
1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
CROSSREFS
Row n has length A003056(n) hence column k starts in row A000217(k).
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).
+20
16
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<=A003056(n).
+20
16
1, 0, 1, 1, 1, 2, 1, 1, 3, 4, 1, 6, 7, 3, 11, 16, 4, 1, 22, 29, 12, 1, 42, 60, 23, 3, 82, 120, 47, 7, 161, 238, 100, 12, 1, 316, 479, 198, 30, 1, 624, 956, 404, 61, 3, 1235, 1910, 818, 126, 7, 2449, 3817, 1652, 258, 16, 4864, 7633, 3319, 537, 30, 1, 9676, 15252, 6686, 1083, 70, 1, 19267, 30491, 13426, 2205
FORMULA
Sum_{k=0..A003056(n)} k * T(n,k) = A099036(n-1) for n>0.
Number T(n,k) of endofunctions on [n] with cycles of k distinct lengths; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+20
14
1, 0, 1, 0, 4, 0, 24, 3, 0, 206, 50, 0, 2300, 825, 0, 31742, 14794, 120, 0, 522466, 294987, 6090, 0, 9996478, 6547946, 232792, 0, 218088504, 160994565, 8337420, 0, 5344652492, 4355845868, 299350440, 151200, 0, 145386399554, 128831993037, 11074483860, 18794160
CROSSREFS
Cf. A003056, A060281, A218868 (the same for permutations).
Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+20
14
1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
CROSSREFS
Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+20
14
1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 2, 0, 7, 5, 0, 11, 9, 1, 0, 15, 17, 2, 0, 22, 28, 5, 0, 30, 47, 10, 0, 42, 74, 21, 1, 0, 56, 116, 37, 2, 0, 77, 175, 67, 5, 0, 101, 263, 112, 10, 0, 135, 385, 187, 20, 0, 176, 560, 302, 40, 1, 0, 231, 800, 479, 72, 2, 0, 297, 1135, 741, 127, 5
COMMENTS
T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A003056(n). T(n,k) = 0 for k > A003056(n).
FORMULA
Sum_{k=1..A003056(n)} k * T(n,k) = A322304(n).
2^A003056: 2^n appears n+1 times.
+20
12
1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024
FORMULA
a(n) = 2^[sqrt(2n+2)-.5] = 2^A003056(n) = A007664(n+1) - A007664(n).
CROSSREFS
Cf. A003056, A007664 (gives partial sums).
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+20
12
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=A003056(n). T(n,k) = 0 for k>A003056(n).
CROSSREFS
Row lengths are 1 + A003056(n).
Recursion counts for summation table A003056 with formula a(y,0) = y, a(y,x) = a((y XOR x),2*(y AND x)).
+20
9
0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 1, 3, 3, 2, 2, 3, 3, 1, 0, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0
COMMENTS
Count the summation table A003056 with recursive formula based on identity A+B = (A XOR B)+ 2*(A AND B) given by Schroeppel and then this table gives the number of recursion steps to get the final result.
CROSSREFS
Cf. A050601, A050602, A003056, A048720 (for the Maple implementation of trinv and XORnos, ANDnos)
Number T(n,k) of compositions of n such that the set of parts is [k]; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+20
8
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 7, 0, 1, 11, 6, 0, 1, 20, 12, 0, 1, 32, 32, 0, 1, 54, 72, 0, 1, 87, 152, 24, 0, 1, 143, 311, 60, 0, 1, 231, 625, 180, 0, 1, 376, 1225, 450, 0, 1, 608, 2378, 1116, 0, 1, 986, 4566, 2544, 120, 0, 1, 1595, 8700, 5752, 360

Search completed in 0.208 seconds