[go: up one dir, main page]

login
A327803
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
7
1, 0, 1, 0, 3, 0, 7, 3, 0, 31, 16, 0, 121, 125, 0, 831, 711, 60, 0, 5041, 5915, 525, 0, 42911, 46264, 6328, 0, 364561, 438681, 67788, 0, 3742453, 4371085, 753420, 12600, 0, 39916801, 49321745, 8924685, 166320, 0, 486891175, 588219523, 113501784, 2966040
OFFSET
0,5
FORMULA
T(n*(n+1)/2,n) = T(A000217(n),n) = A022915(n).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3;
0, 7, 3;
0, 31, 16;
0, 121, 125;
0, 831, 711, 60;
0, 5041, 5915, 525;
0, 42911, 46264, 6328;
0, 364561, 438681, 67788;
0, 3742453, 4371085, 753420, 12600;
...
MAPLE
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
select(x-> nops({x[]})=k, partition(n))):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
# second Maple program:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 06 2020, after 2nd Maple program *)
CROSSREFS
Columns k=0-2 give: A000007, A061095, A327826.
Row sums give A005651.
Cf. A000217, A003056, A022915, A131632 (when the parts are distinct), A226874.
Sequence in context: A265205 A263210 A298095 * A199667 A358658 A181163
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 25 2019
STATUS
approved