[go: up one dir, main page]

login
A219311
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
12
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
OFFSET
0,8
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=A003056(n). T(n,k) = 0 for k>A003056(n).
LINKS
Wikipedia, Young tableau
EXAMPLE
A(4,2) = 3:
+---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 3 4 |
| 4 .-----+ | 3 .-----+ | 2 .-----+
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 9;
0, 1, 14, 16;
0, 1, 34, 35;
0, 1, 55, 134;
0, 1, 125, 435;
0, 1, 209, 1213, 768;
0, 1, 461, 3454, 2310;
0, 1, 791, 10484, 11407;
...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0, h(l), `if`(n>k*(i-(k-1)/2), 0,
g(n, i-1, min(k, i-1), l)+`if`(i>n, 0, g(n-i, i-1, k-1, [l[], i]))))
end:
A:= proc(n, k) option remember; `if`(k<0, 0, g(n, n, k, [])) end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ];
g[n_, i_, k_, l_] := If[n == 0, h[l], If[n > k*(i-(k-1)/2), 0, g[n, i-1, Min[k, i-1], l] + If[i > n, 0, g[n-i, i-1, k-1, Append[l, i]]]]];
a[n_, k_] := a[n, k] = If[k < 0, 0, g[n, n, k, {}]];
t[n_, k_] := a[n, k] - a[n, k-1];
Table[Table[t[n, k], {k, 0, Floor[(Sqrt[1+8*n]-1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000012 (for n>0), A047171(n) = A037952(n)-1, A219316, A219317, A219318, A219319, A219320, A219321, A219322, A219323.
Row sums give: A218293.
Row lengths are 1 + A003056(n).
T(A000217(k),k) = A005118(k+1).
Sequence in context: A289871 A257563 A373118 * A363393 A022880 A366614
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Nov 17 2012
STATUS
approved