[go: up one dir, main page]

login
A131623
Number of blocks in all partitions of n-set with distinct block sizes.
2
1, 1, 7, 9, 31, 223, 442, 1529, 6559, 66111, 159952, 742503, 3047656, 19094286, 245173117, 761328969, 3935539271, 20213664703, 117323673136, 897132508439, 15791065424134, 56649181720176, 353387529508691, 1955231849465423
OFFSET
1,3
LINKS
FORMULA
E.g.f.: Sum(x^n/(n!+x^n),n=1..inf)*Product(1+x^n/n!,n=1..inf).
MAPLE
A131623 := proc(n) local su, i ; su := add(x^i/(i!+x^i), i=1..n+1) ; for i from 1 to n do su := taylor(su*(1+x^i/i!), x=0, n+1) ; od: n!*coeftayl(su, x=0, n) ; end: seq(A131623(n), n=1..30) ; # R. J. Mathar, Oct 25 2007
MATHEMATICA
nn=20; p=Product[1+y x^i/i!, {i, 1, nn}]; Range[0, nn]! CoefficientList[Series[D[p, y]/.y->1, {x, 0, nn}], x] (* Geoffrey Critzer, Aug 30 2012 *)
CROSSREFS
Sequence in context: A200180 A147248 A147186 * A032011 A272434 A272433
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 02 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 25 2007
STATUS
approved