[go: up one dir, main page]

login
A099036
a(n) = 2^n - Fibonacci(n).
21
1, 1, 3, 6, 13, 27, 56, 115, 235, 478, 969, 1959, 3952, 7959, 16007, 32158, 64549, 129475, 259560, 520107, 1041811, 2086206, 4176593, 8359951, 16730848, 33479407, 66987471, 134021310, 268117645, 536356683, 1072909784, 2146137379, 4292788987, 8586410014
OFFSET
0,3
COMMENTS
Binomial transform of (-1)^n*Fib(n)+1 = (-1)^n*A008346(n).
Number of compositions of n+1 that contain 1 as a part. - Vladeta Jovovic, Sep 26 2004
Generated from iterates of M * [1,1,1,...], where M = a tridiagonal matrix with [0,1,1,1,...] as the main diagonal, [1,1,1,...] as the superdiagonal and [1,0,0,0,...] as the subdiagonal. - Gary W. Adamson, Jan 05 2009
Starting with offset 1, generated from iterates of M * [1,1,1,...], M*ANS -> M*ANS,...; where M = = a tridiagonal matrix with (0,1,1,1,...) in the main diagonal, (1,1,1,...) in the superdiagonal and (1,0,0,0,...) in the subdiagonal. - Gary W. Adamson, Jan 04 2009
An elephant sequence, see A175655. For the central square 24 A[5] vectors, with decimal values between 11 and 416, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A027934 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
a(n) = A000079(n+1) - A117591(n) = A117591(n) - 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013
Number of fixed points in all compositions of n+1. - Alois P. Heinz, Jun 18 2020
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
FORMULA
G.f.: (1 - x)^2/((1 - 2*x)*(1 - x - x^2)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
a(n) = A101220(1,2,n+1) - A101220(1,2,n). - Ross La Haye, Aug 05 2005
a(n) = sum(t_1+2*t_2+...+n*t_n=n, multinomial(1+t_1+t_2+...+t_n, 1+t_1, t_2, ..., t_n). - Mircea Merca, Oct 09 2013
a(n) = Sum_{k=0..A003056(n+1)} k * A238350(n+1,k). - Alois P. Heinz, Jun 18 2020
E.g.f.: cosh(2*x) + sinh(2*x) - 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 31 2023
MATHEMATICA
Table[2^n-Fibonacci[n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *)
PROG
(Magma) [2^n-Fibonacci(n): n in [0..35]]; // Vincenzo Librandi, May 03 2011
(Haskell)
a099036 n = a099036_list !! n
a099036_list = zipWith (-) a000079_list a000045_list
-- Reinhard Zumkeller, Aug 15 2013
(PARI) a(n)=2^n-fibonacci(n) \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 23 2004
EXTENSIONS
More terms from Ross La Haye, Aug 05 2005
STATUS
approved