# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a321878 Showing 1-1 of 1 %I A321878 #66 Dec 14 2020 07:49:22 %S A321878 1,0,1,0,2,0,3,1,0,5,2,0,7,5,0,11,9,1,0,15,17,2,0,22,28,5,0,30,47,10, %T A321878 0,42,74,21,1,0,56,116,37,2,0,77,175,67,5,0,101,263,112,10,0,135,385, %U A321878 187,20,0,176,560,302,40,1,0,231,800,479,72,2,0,297,1135,741,127,5 %N A321878 Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows. %C A321878 T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A003056(n). T(n,k) = 0 for k > A003056(n). %C A321878 For fixed k>=1, T(n,k) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2, 1-k))*n/3)) * sqrt(Pi^2 - 6*polylog(2, 1-k)) / (4*k!*sqrt(3*k)*Pi*n). - _Vaclav Kotesovec_, Sep 18 2019 %H A321878 Alois P. Heinz, Rows n = 0..1000, flattened %F A321878 T(n,k) = 1/k! * Sum_{i=0..k} (-1)^i*binomial(k,i) A321884(n,k-i). %F A321878 T(n*(n+1)/2,n) = T(A000217(n),n) = 1. %F A321878 T(n*(n+3)/2,n) = T(A000096(n),n) = A000712(n). %F A321878 Sum_{k=1..A003056(n)} k * T(n,k) = A322304(n). %e A321878 T(6,1) = 11: 111111a, 2a1111a, 22a11a, 222a, 3a111a, 3a2a1a, 33a, 4a11a, 4a2a, 5a1a, 6a. %e A321878 T(6,2) = 9: 2a1111b, 22a11b, 3a111b, 3a2a1b, 3a2b1a, 3a2b1b, 4a11b, 4a2b, 5a1b. %e A321878 T(6,3) = 1: 3a2b1c. %e A321878 Triangle T(n,k) begins: %e A321878 1; %e A321878 0, 1; %e A321878 0, 2; %e A321878 0, 3, 1; %e A321878 0, 5, 2; %e A321878 0, 7, 5; %e A321878 0, 11, 9, 1; %e A321878 0, 15, 17, 2; %e A321878 0, 22, 28, 5; %e A321878 0, 30, 47, 10; %e A321878 0, 42, 74, 21, 1; %e A321878 0, 56, 116, 37, 2; %e A321878 0, 77, 175, 67, 5; %e A321878 ... %p A321878 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A321878 (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k))) %p A321878 end: %p A321878 T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!: %p A321878 seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20); %t A321878 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]]; %t A321878 T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!; %t A321878 Table[Table[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *) %Y A321878 Columns k=0-10 give: A000007, A000041 (for n>0), A327285, A327286, A327287, A327288, A327289, A327290, A327291, A327292, A327293. %Y A321878 Row sums give A305106. %Y A321878 Cf. A000096, A000217, A000712, A003056, A321884, A322304. %K A321878 nonn,look,tabf %O A321878 0,5 %A A321878 _Alois P. Heinz_, Aug 27 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE