[go: up one dir, main page]

login
A258323
Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
14
1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
OFFSET
0,3
LINKS
EXAMPLE
T(6,2) = 43 because the partitions of 6 into 2 distinct parts are {[5,1], [4,2]} and prime(5)*prime(1) + prime(4)*prime(2) = 11*2 + 7*3 = 22 + 21 = 43.
Triangle T(n,k) begins:
1
0, 2;
0, 3;
0, 5, 6;
0, 7, 10;
0, 11, 29;
0, 13, 43, 30;
0, 17, 94, 42;
0, 19, 128, 136;
0, 23, 231, 293;
0, 29, 279, 551, 210;
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(
add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..min(1, n/i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2)):
seq(T(n), n=0..20);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Expand[Sum[g[n-i*j, i-1] * (Prime[i]*x)^j, {j, 0, Min[1, n/i]}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
Row sums give A147655.
T(n*(n+1)/2,n) = A002110(n).
T(n^2,n) = A321267(n).
Sequence in context: A325836 A011013 A138325 * A117175 A228086 A090482
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 26 2015
STATUS
approved