[go: up one dir, main page]

login
Search: a131632 -id:a131632
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n-set with distinct block sizes.
+10
102
1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
OFFSET
0,4
COMMENTS
Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022
LINKS
Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, Fig. 3, arXiv:math/0606370 [math.CO], 2006.
Knopfmacher, A., Odlyzko, A. M., Pittel, B., Richmond, L. B., Stark, D., Szekeres, G. and Wormald, N. C., The asymptotic number of set partitions with unequal block sizes, Electron. J. Combin., 6 (1999), no. 1, Research Paper 2, 36 pp.
FORMULA
E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018
EXAMPLE
From Gus Wiseman, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{1},{2,3}} {{1},{2,3,4}} {{1},{2,3,4,5}}
{{1,2},{3}} {{1,2,3},{4}} {{1,2},{3,4,5}}
{{1,3},{2}} {{1,2,4},{3}} {{1,2,3},{4,5}}
{{1,3,4},{2}} {{1,2,3,4},{5}}
{{1,2,3,5},{4}}
{{1,2,4},{3,5}}
{{1,2,4,5},{3}}
{{1,2,5},{3,4}}
{{1,3},{2,4,5}}
{{1,3,4},{2,5}}
{{1,3,4,5},{2}}
{{1,3,5},{2,4}}
{{1,4},{2,3,5}}
{{1,4,5},{2,3}}
{{1,5},{2,3,4}}
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 06 2008
# second Maple program:
A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
seq(A007837(i), i=0..24); # Peter Luschny, Apr 25 2011
MATHEMATICA
nn=20; p=Product[1+x^i/i!, {i, 1, nn}]; Drop[Range[0, nn]!CoefficientList[ Series[p, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Sep 22 2012 *)
a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
PROG
(PARI) {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017
KEYWORD
nonn
EXTENSIONS
More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015
STATUS
approved
Number A(n,k) of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
27
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 4, 1, 0, 1, 1, 3, 10, 11, 1, 0, 1, 1, 3, 10, 23, 16, 1, 0, 1, 1, 3, 10, 47, 66, 42, 1, 0, 1, 1, 3, 10, 47, 126, 222, 64, 1, 0, 1, 1, 3, 10, 47, 246, 522, 561, 163, 1, 0, 1, 1, 3, 10, 47, 246, 882, 1821, 1647, 256, 1, 0
OFFSET
0,13
LINKS
FORMULA
A(n,k) = Sum_{i=0..min(n,k)} A226874(n,i).
EXAMPLE
A(4,3) = 23: aaaa, aaab, aaba, aabb, aabc, aacb, abaa, abab, abac, abba, abca, acab, acba, baaa, baab, baac, baba, baca, bbaa, bcaa, caab, caba, cbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 1, 4, 10, 10, 10, 10, 10, ...
0, 1, 11, 23, 47, 47, 47, 47, ...
0, 1, 16, 66, 126, 246, 246, 246, ...
0, 1, 42, 222, 522, 882, 1602, 1602, ...
0, 1, 64, 561, 1821, 3921, 6441, 11481, ...
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
Main diagonal gives: A005651.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved
Number T(n,k) of n-length words w over a k-ary alphabet {a1, a2, ..., ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
+10
19
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 10, 12, 24, 0, 1, 15, 50, 60, 120, 0, 1, 41, 180, 300, 360, 720, 0, 1, 63, 497, 1260, 2100, 2520, 5040, 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 0, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880
OFFSET
0,6
COMMENTS
T(n,k) is the sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a multiset of size k.
LINKS
FORMULA
T(n,k) = A226873(n,k) - [k>0] * A226873(n,k-1).
EXAMPLE
T(4,2) = 10: aaab, aaba, aabb, abaa, abab, abba, baaa, baab, baba, bbaa.
T(4,3) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa.
T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 3, 6;
0, 1, 10, 12, 24;
0, 1, 15, 50, 60, 120;
0, 1, 41, 180, 300, 360, 720;
0, 1, 63, 497, 1260, 2100, 2520, 5040;
0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320;
...
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
T:= (n, k)-> `if`(n*k=0, `if`(n=k, 1, 0), n!*b(n, 1, k)):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, i-1)*
combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from first Maple *)
PROG
(PARI)
T(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
{my(t=T(10)); for(n=1, #t, for(k=0, n-1, print1(polcoeff(t[n], k), ", ")); print)} \\ Andrew Howroyd, Dec 20 2017
CROSSREFS
Main diagonal gives: A000142.
Row sums give: A005651.
T(2n,n) gives A318796.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved
Partition n labeled elements into sets of different sizes and order the sets.
+10
15
1, 1, 1, 7, 9, 31, 403, 757, 2873, 12607, 333051, 761377, 3699435, 16383121, 108710085, 4855474267, 13594184793, 76375572751, 388660153867, 2504206435681, 20148774553859, 1556349601444477, 5050276538344665, 33326552998257031, 186169293932977115, 1305062351972825281, 9600936552132048553, 106019265737746665727, 12708226588208611056333, 47376365554715905155127
OFFSET
0,4
COMMENTS
From Alois P. Heinz, Sep 02 2015: (Start)
Also the number of matrices with n rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct. Equivalently, the number of compositions of n into distinct parts where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once.
a(3) = 7:
[1] [1 0] [0 1] [1 0] [0 1] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [1 0] [0 1].
3abc, 2ab1c, 1c2ab, 2ac1b, 1b2ac, 2bc1a, 1a2bc. (End)
LINKS
C. G. Bower, Transforms (2)
FORMULA
"AGJ" (ordered, elements, labeled) transform of 1, 1, 1, 1, ...
a(n) = Sum_{k>=0} k! * A131632(n,k). - Alois P. Heinz, Sep 09 2015
MAPLE
b:= proc(n, i, p) option remember;
`if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p)+
`if`(i>n, 0, b(n-i, i-1, p+1)*binomial(n, i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 02 2015
MATHEMATICA
f[list_]:=Apply[Multinomial, list]*Length[list]!; Table[Total[Map[f, Select[IntegerPartitions[n], Sort[#] == Union[#] &]]], {n, 1, 30}]
b[n_, i_, p_] := b[n, i, p] = If[i*(i+1)/2<n, 0, If[n==0, p!, b[n, i-1, p] + If[i>n, 0, b[n-i, i-1, p+1]*Binomial[n, i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
PROG
(PARI) seq(n)=[subst(serlaplace(y^0*p), y, 1) | p <- Vec(serlaplace(prod(k=1, n, 1 + x^k*y/k! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018
CROSSREFS
Main diagonal of A261836 and A261959.
KEYWORD
nonn
AUTHOR
Christian G. Bower, Apr 01 1998
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 02 2015
STATUS
approved
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
+10
7
1, 0, 1, 0, 3, 0, 7, 3, 0, 31, 16, 0, 121, 125, 0, 831, 711, 60, 0, 5041, 5915, 525, 0, 42911, 46264, 6328, 0, 364561, 438681, 67788, 0, 3742453, 4371085, 753420, 12600, 0, 39916801, 49321745, 8924685, 166320, 0, 486891175, 588219523, 113501784, 2966040
OFFSET
0,5
FORMULA
T(n*(n+1)/2,n) = T(A000217(n),n) = A022915(n).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3;
0, 7, 3;
0, 31, 16;
0, 121, 125;
0, 831, 711, 60;
0, 5041, 5915, 525;
0, 42911, 46264, 6328;
0, 364561, 438681, 67788;
0, 3742453, 4371085, 753420, 12600;
...
MAPLE
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
select(x-> nops({x[]})=k, partition(n))):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
# second Maple program:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 06 2020, after 2nd Maple program *)
CROSSREFS
Columns k=0-2 give: A000007, A061095, A327826.
Row sums give A005651.
Cf. A000217, A003056, A022915, A131632 (when the parts are distinct), A226874.
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 25 2019
STATUS
approved
Number of set partitions of [n] into two blocks with distinct sizes.
+10
3
3, 4, 15, 21, 63, 92, 255, 385, 1023, 1585, 4095, 6475, 16383, 26332, 65535, 106761, 262143, 431909, 1048575, 1744435, 4194303, 7036529, 16777215, 28354131, 67108863, 114159427, 268435455, 459312151, 1073741823, 1846943452, 4294967295, 7423131481, 17179869183
OFFSET
3,1
LINKS
FORMULA
a(n) = n! * [x^n*y^2] Product_{n>=1} (1+y*x^n/n!).
a(n) = Sum_{i=1..floor((n-1)/2)} binomial(n,i). - Wesley Ivan Hurt, Nov 15 2017
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Dec 11 2020
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 2):
seq(a(n), n=3..40);
MATHEMATICA
Table[Sum[Binomial[n, i], {i, Floor[(n - 1)/2]}], {n, 3, 35}] (* Michael De Vlieger, Nov 15 2017 *)
PROG
(Magma) [(&+[Binomial(n, j): j in [1..Floor((n-1)/2)]]): n in [3..40]]; // G. C. Greubel, Jul 14 2024
(SageMath)
def A272514(n): return sum( binomial(n, j) for j in range(1, 1+((n-1)//2)))
[A272514(n) for n in range(3, 31)] # G. C. Greubel, Jul 14 2024
CROSSREFS
Column k=2 of A131632.
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved
Number of set partitions of [n] into three blocks with distinct sizes.
+10
2
60, 105, 448, 2016, 4980, 15675, 61644, 155155, 482573, 1733550, 4549808, 13890360, 48104628, 128949675, 392009140, 1322692581, 3607864403, 10929721440, 36245555284, 100109572875, 302709337515, 990788537700, 2763564406113, 8344789976616, 27039048750600
OFFSET
6,1
LINKS
FORMULA
a(n) = n! * [x^n*y^3] Product_{n>=1} (1+y*x^n/n!).
Conjecture: a(n) ~ 3^n / 6. - Vaclav Kotesovec, Dec 11 2020
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 3):
seq(a(n), n=6..40);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]];
a[n_] := b[n, n, 3];
a /@ Range[6, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A131632.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved
Number of set partitions of [n] into four blocks with distinct sizes.
+10
2
12600, 27720, 138600, 643500, 4408404, 12687675, 60780720, 238299880, 1295666424, 4208874756, 18840460800, 72351683460, 361100656224, 1228553894491, 5370616442928, 20605640103400, 97659853077800, 342942099783075, 1479570975628200, 5678915129142255
OFFSET
10,1
LINKS
FORMULA
a(n) = n! * [x^n*y^4] Product_{n>=1} (1+y*x^n/n!).
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 4):
seq(a(n), n=10..40);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]];
a[n_] := b[n, n, 4];
a /@ Range[10, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A131632.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved
Number of set partitions of [n] into five blocks with distinct sizes.
+10
2
37837800, 100900800, 588107520, 2977294320, 20020160160, 164118754800, 635661248040, 3295178686800, 17741374681800, 95826446465904, 623399389674600, 2664090278249400, 13876038856379700, 71797074694745400, 375274098870636420, 2199911433079733100
OFFSET
15,1
LINKS
FORMULA
a(n) = n! * [x^n*y^5] Product_{n>=1} (1+y*x^n/n!).
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 5):
seq(a(n), n=15..40);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]];
a[n_] := b[n, n, 5];
a /@ Range[15, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A131632.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved
Number of set partitions of [n] into six blocks with distinct sizes.
+10
2
2053230379200, 6453009763200, 43288940494800, 242418066770880, 1707999012720000, 12887361202716000, 144924867388501200, 620550897351184800, 4048435123506774000, 23424084614648718000, 161250104584826056800, 1013722794731975328000, 8616255173755280251200
OFFSET
21,1
LINKS
FORMULA
a(n) = n! * [x^n*y^6] Product_{n>=1} (1+y*x^n/n!).
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 6):
seq(a(n), n=21..40);
CROSSREFS
Column k=6 of A131632.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved

Search completed in 0.017 seconds