[go: up one dir, main page]

login
Search: a242027 -id:a242027
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.
+10
23
1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
OFFSET
1,2
COMMENTS
Also called sagittal graphs.
T(n,k)=1 iff n=k (counts the identity mapping of [n]). - Len Smiley, Apr 03 2006
Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - Peter Luschny, Mar 03 2009
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009
LINKS
Julia Handl and Joshua Knowles, An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag. [From N. J. A. Sloane, Jul 09 2009]
D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
D. E. Knuth and B. Pittel, A recurrence related to trees, Proceedings of the American Mathematical Society, 105(2):335-349, 1989. [From Peter Luschny, Mar 03 2009]
J. Riordan, Enumeration of Linear Graphs for Mappings of Finite Sets, Ann. Math. Stat., 33, No. 1, Mar. 1962, pp. 178-185.
David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
FORMULA
E.g.f.: 1/(1 + LambertW(-x))^y.
T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - Len Smiley, Apr 03 2006
T(2*n, n) = A273442(n), n >= 1. - Alois P. Heinz, May 22 2016
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A190314(n).
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)
EXAMPLE
Triangle T(n,k) begins:
1;
3, 1;
17, 9, 1;
142, 95, 18, 1;
1569, 1220, 305, 30, 1;
21576, 18694, 5595, 745, 45, 1;
355081, 334369, 113974, 18515, 1540, 63, 1;
6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From Peter Luschny, Mar 03 2009: (Start)
Tree polynomials (with offset 0):
t_0(y) = 1;
t_1(y) = y;
t_2(y) = 3*y + y^2;
t_3(y) = 17*y + 9*y^2 + y^3; (End)
MAPLE
with(combinat):T:=array(1..8, 1..8):for m from 1 to 8 do for p from 1 to m do T[m, p]:=sum(binomial(m-1, k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1, p), k=0..m-1); print(T[m, p]) od od; # Len Smiley, Apr 03 2006
From Peter Luschny, Mar 03 2009: (Start)
T := z -> sum(n^(n-1)*z^n/n!, n=1..16):
p := convert(simplify(series((1-T(z))^(-y), z, 12)), 'polynom'):
seq(print(coeff(p, z, i)*i!), i=0..8); (End)
MATHEMATICA
t=Sum[n^(n-1) x^n/n!, {n, 1, 10}];
Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n, 1, 10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
PROG
(Magma)
A060281:= func< n, k | (&+[Binomial(n-1, j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1, k): j in [0..n-1]]) >;
[A060281(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
(SageMath)
@CachedFunction
def A060281(n, k): return sum(binomial(n-1, j)*n^(n-1-j)*stirling_number1(j+1, k) for j in range(n))
flatten([[A060281(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Nov 06 2024
CROSSREFS
Row sums: A000312.
Main diagonal and first lower diagonal give: A000012, A045943.
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Apr 09 2001
STATUS
approved
Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.
+10
8
1, 2, 3, 3, 10, 14, 25, 95, 176, 424, 120, 721, 3269, 1050, 6406, 21202, 12712, 42561, 178443, 141876, 436402, 1622798, 1418400, 151200, 3628801, 17064179, 17061660, 2162160, 48073796, 177093256, 212254548, 41580000, 479001601, 2293658861, 2735287698, 719072640
OFFSET
1,2
COMMENTS
T(A000217(n),n) gives A246292. - Alois P. Heinz, Aug 21 2014
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009
FORMULA
E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).
EXAMPLE
: 1;
: 2;
: 3, 3;
: 10, 14;
: 25, 95;
: 176, 424, 120;
: 721, 3269, 1050;
: 6406, 21202, 12712;
: 42561, 178443, 141876;
: 436402, 1622798, 1418400, 151200;
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2014
MATHEMATICA
nn=10; a=Product[1-y+y Exp[x^i/i], {i, 1, nn}]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[a , {x, 0, nn}], {x, y}], 1]]//Grid
CROSSREFS
Columns k=1-3 give: A005225, A005772, A133119.
Row sums are: A000142.
Row lengths are: A003056.
Cf. A208437, A242027 (the same for endofunctions), A246292, A317327.
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Nov 07 2012
STATUS
approved
Number of endofunctions on [n] where all cycle lengths are equal.
+10
4
1, 1, 4, 24, 206, 2300, 31742, 522466, 9996478, 218088504, 5344652492, 145386399554, 4347272984936, 141737636485588, 5004538251283846, 190247639729155110, 7747479351505166738, 336492490519027631984, 15526758954835131888980, 758548951300064645742034
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=0..n} C(n-1,j-1) * n^(n-j) * A005225(j).
a(n) = Sum_{k=0..n} A243098(n,k).
MAPLE
with(numtheory):
b:= n-> `if`(n=0, 1, n!*add((d!*(n/d)^d)^(-1), d=divisors(n))):
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j), j=0..n):
seq(a(n), n=0..25);
MATHEMATICA
nn=20; t[x_]:=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[Series[1+Sum[Exp[t[x]^i/i]-1, {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 11 2014 *)
CROSSREFS
Cf. A005225, A061356, A212789, A242027 (column k=1).
Row sums of A243098.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 10 2014
STATUS
approved
Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.
+10
4
1, 1, 3, 120, 151200, 10897286400, 70959641905152000, 60493719168990845337600000, 9226024969987629401488081551360000000, 329646772667218349211759153151614073700352000000000, 3498788402132461399351052923160966975192989707740695756800000000000
OFFSET
0,3
LINKS
FORMULA
a(n) = C(n+1,2)! / n!.
a(n) = A218868(n*(n+1)/2,n) = A218868(A000217(n),n).
a(n) = A242027(n*(n+1)/2,n) = A242027(A000217(n),n).
a(n) = A022915(n) * A000178(n-1) for n>0.
MAPLE
a:= n-> binomial(n+1, 2)!/n!:
seq(a(n), n=0..12);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of two distinct lengths.
+10
2
3, 50, 825, 14794, 294987, 6547946, 160994565, 4355845868, 128831993037, 4139915120692, 143730813561387, 5364402750234722, 214267821055280535, 9122448969654942398, 412494871628188325985, 19745497885965416922364, 997667658771538572210069
OFFSET
3,1
LINKS
CROSSREFS
Column k=2 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of three distinct lengths.
+10
2
120, 6090, 232792, 8337420, 299350440, 11074483860, 427387853508, 17302253251998, 736435961119768, 32970154976590650, 1551833612483679600, 76712206915275154368, 3977549433235139894640, 216011528111397978249156, 12268895890831542489647980
OFFSET
6,1
LINKS
CROSSREFS
Column k=3 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of four distinct lengths.
+10
2
151200, 18794160, 1524489120, 104403293280, 6629862919680, 408263722546680, 24979292241583680, 1540245109352826240, 96546169418188875840, 6185447845988110316640, 406427517408935067292800, 27447169190924624967665280, 1907535125221297935659493120
OFFSET
10,1
LINKS
CROSSREFS
Column k=4 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of five distinct lengths.
+10
2
10897286400, 2847824179200, 447714492825600, 55631842659993600, 6069631324282606080, 613491878066254387200, 59271533998668036864000, 5582783667191422365273600, 519429902059266063124089600, 48173463238302027134150906880, 4482046832478916432636662912000
OFFSET
15,1
LINKS
CROSSREFS
Column k=5 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of six distinct lengths.
+10
2
70959641905152000, 34902006725634048000, 9826160066029891584000, 2094608362584149508096000, 377645969857422372986880000, 61037547512109625693716480000, 9159551131283801888655375360000, 1305831228981957559100465326080000, 179691299614983815137464791629824000
OFFSET
21,1
LINKS
CROSSREFS
Column k=6 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved
Number of endofunctions on [n] with cycles of seven distinct lengths.
+10
2
60493719168990845337600000, 51533087017084076371968000000, 24328368349590081870213120000000, 8447402048381795563019001446400000, 2416739631770031221957067001036800000, 605297545839594874847438968061952000000, 137754467147216760340877937054970675200000
OFFSET
28,1
LINKS
CROSSREFS
Column k=7 of A242027.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2014
STATUS
approved

Search completed in 0.006 seconds