[go: up one dir, main page]

login
Search: a258323 -id:a258323
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) in which n-th row lists in increasing order all partitions lambda of n into distinct parts encoded as Product_{i:lambda} prime(i); n>=0, 1<=k<=A000009(n).
+10
31
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 13, 21, 22, 30, 17, 26, 33, 35, 42, 19, 34, 39, 55, 66, 70, 23, 38, 51, 65, 77, 78, 105, 110, 29, 46, 57, 85, 91, 102, 130, 154, 165, 210, 31, 58, 69, 95, 114, 119, 143, 170, 182, 195, 231, 330, 37, 62, 87, 115, 133, 138, 187
OFFSET
0,2
COMMENTS
The concatenation of all rows (with offset 1) gives a permutation of the squarefree numbers A005117. The missing positive numbers are in A013929.
LINKS
EXAMPLE
The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} => row 5 = [11, 14, 15].
For n=0 the empty partition [] gives the empty product 1.
Triangle T(n,k) begins:
1;
2;
3;
5, 6;
7, 10;
11, 14, 15;
13, 21, 22, 30;
17, 26, 33, 35, 42;
19, 34, 39, 55, 66, 70;
23, 38, 51, 65, 77, 78, 105, 110;
29, 46, 57, 85, 91, 102, 130, 154, 165, 210;
...
Corresponding triangle of strict integer partitions begins:
0
(1)
(2)
(3) (21)
(4) (31)
(5) (41) (32)
(6) (42) (51) (321)
(7) (61) (52) (43) (421)
(8) (71) (62) (53) (521) (431)
(9) (81) (72) (63) (54) (621) (432) (531). - Gus Wiseman, Feb 23 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq(
map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..min(1, n/i))]))
end:
T:= n-> sort(b(n$2))[]:
seq(T(n), n=0..14);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Flatten[Table[Map[ #*Prime[i]^j&, b[n-i*j, i-1]], {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives: A008578(n+1).
Last elements of rows give: A246868.
Row sums give A147655.
Row lengths are: A000009.
Cf. A005117, A118462, A215366 (the same for all partitions), A258323, A299755, A299757, A299759.
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Sep 05 2014
STATUS
approved
a(n) is the coefficient of x^n in the polynomial given by Product_{k>=1} (1 + prime(k)*x^k).
+10
25
1, 2, 3, 11, 17, 40, 86, 153, 283, 547, 1069, 1737, 3238, 5340, 9574, 17251, 27897, 45845, 78601, 126725, 207153, 353435, 550422, 881454, 1393870, 2239938, 3473133, 5546789, 8762663, 13341967, 20676253, 31774563, 48248485, 74174759, 111904363, 170184798
OFFSET
0,2
COMMENTS
Sum of all squarefree numbers whose prime indices sum to n. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, May 09 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..9000 (first 1001 terms from Harvey P. Dale)
FORMULA
a(n) = [x^n] Product_{k>=1} 1+prime(k)*x^k. - Alois P. Heinz, Sep 05 2014
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = prime(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 10 2020
EXAMPLE
Form a product from the primes: (1 + 2*x) * (1 + 3*x^2) * (1 + 5*x^3) * ...* (1 + prime(n)*x^n) * ... Multiplying out gives 1 + 2*x + 3*x^2 + 11*x^3 + ..., so the sequence begins 1, 2, 3, 11, ....
From Petros Hadjicostas, Apr 10 2020: (Start)
Let f(m) = prime(m). Using the strict partitions of n (see A000009), we get:
a(1) = f(1) = 2,
a(2) = f(2) = 3,
a(3) = f(3) + f(1)*f(2) = 5 + 2*3 = 11,
a(4) = f(4) + f(1)*f(3) = 7 + 2*5 = 17,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 11 + 2*7 + 3*5 = 40,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 13 + 2*11 + 3*7 + 2*3*5 = 86,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 17 + 2*13 + 3*11 + 5*7 + 2*3*7 = 153. (End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*ithprime(i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 05 2014
MATHEMATICA
nn=40; Take[Rest[CoefficientList[Expand[Times@@Table[1+Prime[n]x^n, {n, nn}]], x]], nn] (* Harvey P. Dale, Jul 01 2012 *)
KEYWORD
nonn
AUTHOR
Neil Fernandez, Nov 09 2008
EXTENSIONS
More terms from Harvey P. Dale, Jul 01 2012
a(0)=1 inserted by Alois P. Heinz, Sep 05 2014
Name edited by Petros Hadjicostas, Apr 10 2020
STATUS
approved
a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.
+10
16
0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
OFFSET
1,2
COMMENTS
This is the sum of distinct squarefree semiprimes with prime indices summing to n + 1. A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 05 2020
FORMULA
a(n) = A024697(n) for even n. - M. F. Hasler, Apr 06 2014
EXAMPLE
From Gus Wiseman, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
6 = 6
10 = 10
29 = 14 + 15
43 = 22 + 21
94 = 26 + 33 + 35
128 = 34 + 39 + 55
231 = 38 + 51 + 65 + 77
279 = 46 + 57 + 85 + 91
(End)
MATHEMATICA
f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
PROG
(PARI) A025129=n->sum(k=1, n\2, prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
(Haskell)
a025129 n = a025129_list !! (n-1)
a025129_list= f (tail a000040_list) [head a000040_list] 1 where
f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
f ps (p : qs) (k + 1)
-- Reinhard Zumkeller, Apr 07 2014
CROSSREFS
The nonsquarefree version is A024697 (shifted right).
Row sums of A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339194 sums squarefree semiprimes grouped by greater prime factor.
KEYWORD
nonn
EXTENSIONS
Following suggestions by Robert Israel and N. J. A. Sloane, initial 0=a(1) added by M. F. Hasler, Apr 06 2014
STATUS
approved
Triangle read by rows: T1[n,k;x] := Sum_{partitions with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, for x_i = A000040(i).
+10
5
2, 3, 4, 5, 6, 8, 7, 19, 12, 16, 11, 29, 38, 24, 32, 13, 68, 85, 76, 48, 64, 17, 94, 181, 170, 152, 96, 128, 19, 177, 326, 443, 340, 304, 192, 256, 23, 231, 683, 787, 886, 680, 608, 384, 512, 29, 400, 1066, 1780, 1817, 1772, 1360, 1216, 768, 1024, 31, 484, 1899, 3119
OFFSET
1,1
COMMENTS
Let p(n; m_1, m_2, m_3, ..., m_n) denote a partition of integer n in exponential representation, i.e., the m_i are the counts of parts i and satisfy 1*m_1 + 2*m_2 + 3*m_3 + ... + n*m_n = n.
Let p(n, k; m_1, m_2, m_3, ..., m_n) be the partitions of n into exactly k parts; these are further constrained by m_1 + m_2 + m_3 + ... + m_n = k.
Then the triangle is given by T1[n,k;x] := Sum_{all p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, where x_i is the i-th prime number (A000040).
2nd column (4, 6, 19, 29, 68, 94, 177, ...) is A024697.
Row sums give A145519.
EXAMPLE
Triangle starts:
2;
3, 4;
5, 6, 8;
7, 19, 12, 16;
11, 29, 38, 24, 32;
13, 68, 85, 76, 48, 64;
...
MAPLE
g:= proc(n, i) option remember; `if`(n=0 or i=1, (2*x)^n,
expand(add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, May 25 2015
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0 || i==1, (2 x)^n, Expand[Sum[g[n-i*j, i-1]*(Prime[i]*x)^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tilman Neumann, Oct 12 2008
EXTENSIONS
Reference to more terms etc. changed to make it version independent by Tilman Neumann, Sep 02 2009
STATUS
approved
Sum over all partitions lambda of n into 3 distinct parts of Product_{i:lambda} prime(i).
+10
2
30, 42, 136, 293, 551, 892, 1765, 2570, 4273, 6747, 9770, 13958, 21206, 28280, 39702, 54913, 72227, 94682, 127095, 160046, 206119, 263581, 327790, 406354, 512372, 616764, 754412, 921169, 1100165, 1314196, 1584835, 1854384, 2191013, 2590565, 3006512, 3495086
OFFSET
6,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 4), polynom)
end:
a:= n-> coeff(g(n$2), x, 3):
seq(a(n), n=6..60);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 3];
a /@ Range[6, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved
Sum over all partitions lambda of n into 4 distinct parts of Product_{i:lambda} prime(i).
+10
2
210, 330, 852, 1826, 4207, 6595, 13548, 21479, 38905, 59000, 95953, 142843, 231431, 324152, 487361, 683227, 1003028, 1347337, 1907811, 2541970, 3526314, 4597020, 6194948, 7969172, 10618000, 13401580, 17424498, 21875750, 28102737, 34685941, 43856482, 53791587
OFFSET
10,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 5), polynom)
end:
a:= n-> coeff(g(n$2), x, 4):
seq(a(n), n=10..60);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 4];
a /@ Range[10, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved
Sum over all partitions lambda of n into 5 distinct parts of Product_{i:lambda} prime(i).
+10
2
2310, 2730, 7860, 15606, 35594, 67255, 120061, 201324, 364479, 592991, 1004771, 1530056, 2444073, 3691392, 5610179, 8334486, 12213775, 17529361, 25187765, 35345858, 49999364, 68516285, 94223007, 127478773, 172613052, 230362430, 305639795, 401637665, 527011287
OFFSET
15,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 6), polynom)
end:
a:= n-> coeff(g(n$2), x, 5):
seq(a(n), n=15..60);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 5];
a /@ Range[15, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved
Sum over all partitions lambda of n into 6 distinct parts of Product_{i:lambda} prime(i).
+10
2
30030, 39270, 90300, 177930, 381222, 722434, 1477619, 2309879, 4194446, 6846481, 11667593, 18212397, 30309561, 45149226, 70722044, 105790662, 160115543, 232478684, 346845682, 489561123, 709058342, 994019962, 1405076982, 1932862089, 2705315737, 3653574123
OFFSET
21,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 7), polynom)
end:
a:= n-> coeff(g(n$2), x, 6):
seq(a(n), n=21..60);
CROSSREFS
Column k=6 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved
Sum over all partitions lambda of n into 7 distinct parts of Product_{i:lambda} prime(i).
+10
2
510510, 570570, 1436820, 2655870, 5532330, 9757518, 19659886, 34710965, 58356321, 96541978, 161476211, 256683013, 419693431, 647984259, 1021626403, 1536889595, 2332063802, 3443800806, 5133970767, 7443724123, 10827942578, 15520714599, 22052126419, 30994058608
OFFSET
28,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 8), polynom)
end:
a:= n-> coeff(g(n$2), x, 7):
seq(a(n), n=28..60);
CROSSREFS
Column k=7 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved
Sum over all partitions lambda of n into 8 distinct parts of Product_{i:lambda} prime(i).
+10
2
9699690, 11741730, 27927900, 49533330, 98525490, 170218830, 325872714, 562212782, 1032566057, 1629661685, 2724030632, 4284584225, 6990871609, 10713813287, 17001782121, 25600766613, 39614085330, 58088625761, 87187552970, 126762441906, 186103726454, 266554756593
OFFSET
36,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 9), polynom)
end:
a:= n-> coeff(g(n$2), x, 8):
seq(a(n), n=36..60);
CROSSREFS
Column k=8 of A258323.
Cf. A000040.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved

Search completed in 0.008 seconds