Displaying 1-10 of 20 results found.
Numbers k such that 2k-1 is prime.
+0
85
2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Positions of prime numbers among odd numbers. - Zak Seidov, Mar 26 2013
Also, the integers remaining after removing every third integer following 2, and, recursively, removing every p-th integer following the next remaining entry (where p runs through the primes, beginning with 5). - Pete Klimek, Feb 10 2014
Also, numbers k such that k^2 = m^2 + p, for some integers m and every prime p > 2. Applicable m values are m = k - 1 (giving p = 2k - 1). Less obvious is: no solution exists if m equals any value in A047845, which is the complement of ( A006254 - 1). - Richard R. Forberg, Apr 26 2014
If you define a different type of multiplication (*) where x (*) y = x * y + (x - 1) * (y - 1), (which has the commutative property) then this is the set of primes that follows. - Jason Atwood, Jun 16 2019
PROG
(Python)
from sympy import prime
Numbers k such that 2*k + 3 is a prime.
+0
65
0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
n is in the sequence iff none of the numbers (n-3k)/(2k+1), 1 <= k <= (n-1)/5, is positive integer. - Vladimir Shevelev, May 31 2009
MAPLE
select(t -> isprime(2*t+3), [$0..1000]); # Robert Israel, Feb 19 2015
MATHEMATICA
Select[Range[0, 200], PrimeQ[2#+3]&] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(PARI) [k | k<-[0..99], isprime(2*k+3)] \\ for illustration
(Sage) [n for n in (0..200) if is_prime(2*n+3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), this seq(k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19). - Jason Kimberley, Sep 07 2012
EXTENSIONS
Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.
1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
COMMENTS
Or, numbers k such that 2k+1 is prime.
Also numbers not of the form 2xy + x + y. - Jose Brox (tautocrona(AT)terra.es), Dec 29 2005
This sequence arises if you factor the product of a large number of the first odd numbers into the form 3^n(3)5^n(5)7^n(7)11^n(11)... Then n(3)/n(5) = 2, n(3)/n(7) = 3, n(3)/n(11) = 5, ... . - Andrzej Staruszkiewicz (astar(AT)th.if.uj.edu.pl), May 31 2007
Kohen shows: A king invites n couples to sit around a round table with 2n+1 seats. For each couple, the king decides a prescribed distance d between 1 and n which the two spouses have to be seated from each other (distance d means that they are separated by exactly d-1 chairs). We will show that there is a solution for every choice of the distances if and only if 2n+1 is a prime number [i.e., iff n is in A005097], using a theorem known as Combinatorial Nullstellensatz. - Jonathan Vos Post, Jun 14 2010
Starting from 6, positions at which new primes are seen for Goldbach partitions. E.g., 31 is first seen at 34 from 31+3, so position = 1 + (34-6)/2 = 15. - Bill McEachen, Jul 05 2010
Perfect error-correcting Lee codes of word length n over Z: it is conjectured that these always exist when 2n+1 is a prime, as mentioned in Horak. - Jonathan Vos Post, Sep 19 2011
I conjecture that the set of pairwise sums of terms of this sequence ( A005097) is the set of integers greater than 1, i.e.: 1+1=2, 1+2=3, ..., 5+5=10, ... (This is equivalent to Goldbach's conjecture: every even integer greater than or equal to 6 can be expressed as the sum of two odd primes.) - Lear Young, May 20 2014
See conjecture and comments from Richard R. Forberg, in Links section below, on the relationship of this sequence to rules on values of c that allow both p^q+c and p^q-c to be prime, for an infinite number of primes p. - Richard R. Forberg, Jul 13 2016
The sequence represents the minimum number Ng of gears which are needed to draw a complete graph of order p using a Spirograph(R), where p is an odd prime. The resulting graph consists of Ng hypotrochoids whose respective nodes coincide. If the teethed ring has a circumference p then Ng = (p-1)/2. Examples: A complete graph of order three can be drawn with a Spirograph(R) using a ring with 3n teeth and one gear with n teeth. n is an arbitrary number, only related to the geometry of the gears. A complete graph of order 5 can be drawn using a ring with diameter 5 and 2 gears with diameters 1 and 2 respectively. A complete graph of order 7 can be drawn using a ring with diameter 7 and 3 gears with diameters 1, 2 and 3 respectively. - Bob Andriesse, Mar 31 2017
MAPLE
with(numtheory): p:=n-> ithprime(n):seq((p(n+1)^2-1)/(2*sigma(p(n+1))), n= 1..64) # Gary Detlefs, May 02 2012
PROG
(Haskell)
(Python)
from sympy import prime
CROSSREFS
A130290 is an essentially identical sequence.
Cf. A005384 (subsequence of primes), A266400 (their indices in this sequence).
Nonnegative numbers k such that 2k+7 is prime.
+0
32
0, 2, 3, 5, 6, 8, 11, 12, 15, 17, 18, 20, 23, 26, 27, 30, 32, 33, 36, 38, 41, 45, 47, 48, 50, 51, 53, 60, 62, 65, 66, 71, 72, 75, 78, 80, 83, 86, 87, 92, 93, 95, 96, 102, 108, 110, 111, 113, 116, 117, 122, 125, 128, 131, 132, 135, 137, 138, 143, 150, 152, 153, 155, 162
EXAMPLE
If n=0, then 2*0 + 7 = 7 (prime).
If n=15, then 2*15 + 7 = 37 (prime).
If n=27, then 2*27 + 7 = 61 (prime).
PROG
(Sage) [n for n in (0..200) if is_prime(2*n+7) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+7) ) # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A153053 (Numbers n such that 2n+7 is not a prime)
Positive integers n such that 2n - 17 is prime.
+0
21
10, 11, 12, 14, 15, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 38, 39, 42, 44, 45, 48, 50, 53, 57, 59, 60, 62, 63, 65, 72, 74, 77, 78, 83, 84, 87, 90, 92, 95, 98, 99, 104, 105, 107, 108, 114, 120, 122, 123, 125, 128, 129, 134, 137, 140, 143, 144, 147, 149, 150, 155, 162
FORMULA
Half of p+17 where p is a prime greater than 2.
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 20 2004
Numbers k such that 2k-3 is prime.
+0
34
3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157, 158
FORMULA
Half of p + 3, where p is a prime greater than 2.
PROG
(Sage) [n for n in (1..200) if is_prime(2*n-3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([1..200], k-> IsPrime(2*k-3) ) # G. C. Greubel, May 21 2019
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 14 2004
Positive integers n such that 2n-19 is prime.
+0
22
11, 12, 13, 15, 16, 18, 19, 21, 24, 25, 28, 30, 31, 33, 36, 39, 40, 43, 45, 46, 49, 51, 54, 58, 60, 61, 63, 64, 66, 73, 75, 78, 79, 84, 85, 88, 91, 93, 96, 99, 100, 105, 106, 108, 109, 115, 121, 123, 124, 126, 129, 130, 135, 138, 141, 144, 145, 148, 150, 151, 156, 163
FORMULA
Half of p+19 where p is a prime greater than 2.
MATHEMATICA
Select[Range[10, 200], PrimeQ[2#-19]&] (* Harvey P. Dale, May 08 2017 *)
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 21 2004
Positive integers n such that 2n-15 is prime.
+0
21
9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 34, 37, 38, 41, 43, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 76, 77, 82, 83, 86, 89, 91, 94, 97, 98, 103, 104, 106, 107, 113, 119, 121, 122, 124, 127, 128, 133, 136, 139, 142, 143, 146, 148, 149, 154, 161, 163
FORMULA
Half of p+15 where p is a prime greater than 2.
MATHEMATICA
Select[Range[9, 200], PrimeQ[2#-15]&] (* Harvey P. Dale, Apr 04 2021 *)
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 19 2004
Positive integers n such that 2n-13 is prime.
+0
20
8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 25, 27, 28, 30, 33, 36, 37, 40, 42, 43, 46, 48, 51, 55, 57, 58, 60, 61, 63, 70, 72, 75, 76, 81, 82, 85, 88, 90, 93, 96, 97, 102, 103, 105, 106, 112, 118, 120, 121, 123, 126, 127, 132, 135, 138, 141, 142, 145, 147, 148, 153, 160, 162
FORMULA
Half of p+13 where p is a prime greater than 2.
MATHEMATICA
Select[Range[8, 200], PrimeQ[2#-13]&] (* Harvey P. Dale, Apr 26 2013 *)
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 18 2004
Positive integers n such that 2n - 9 is prime.
+0
22
6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 34, 35, 38, 40, 41, 44, 46, 49, 53, 55, 56, 58, 59, 61, 68, 70, 73, 74, 79, 80, 83, 86, 88, 91, 94, 95, 100, 101, 103, 104, 110, 116, 118, 119, 121, 124, 125, 130, 133, 136, 139, 140, 143, 145, 146, 151, 158, 160
FORMULA
Half of p+9 where p is a prime greater than 2.
PROG
(Magma) [n: n in [6..160] | IsPrime(2*n-9)]; // Bruno Berselli, Mar 05 2011
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 15 2004
Search completed in 0.013 seconds
|