[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a097338 -id:a097338
     Sort: relevance | references | number | modified | created      Format: long | short | data
(Odd primes - 1)/2.
+0
142
1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
OFFSET
1,2
COMMENTS
Or, numbers k such that 2k+1 is prime.
Also numbers not of the form 2xy + x + y. - Jose Brox (tautocrona(AT)terra.es), Dec 29 2005
This sequence arises if you factor the product of a large number of the first odd numbers into the form 3^n(3)5^n(5)7^n(7)11^n(11)... Then n(3)/n(5) = 2, n(3)/n(7) = 3, n(3)/n(11) = 5, ... . - Andrzej Staruszkiewicz (astar(AT)th.if.uj.edu.pl), May 31 2007
Kohen shows: A king invites n couples to sit around a round table with 2n+1 seats. For each couple, the king decides a prescribed distance d between 1 and n which the two spouses have to be seated from each other (distance d means that they are separated by exactly d-1 chairs). We will show that there is a solution for every choice of the distances if and only if 2n+1 is a prime number [i.e., iff n is in A005097], using a theorem known as Combinatorial Nullstellensatz. - Jonathan Vos Post, Jun 14 2010
Starting from 6, positions at which new primes are seen for Goldbach partitions. E.g., 31 is first seen at 34 from 31+3, so position = 1 + (34-6)/2 = 15. - Bill McEachen, Jul 05 2010
Perfect error-correcting Lee codes of word length n over Z: it is conjectured that these always exist when 2n+1 is a prime, as mentioned in Horak. - Jonathan Vos Post, Sep 19 2011
Also solutions to: A000010(2*n+1) = n * A000005(2*n+1). - Enrique Pérez Herrero, Jun 07 2012
A193773(a(n)) = 1. - Reinhard Zumkeller, Jan 02 2013
I conjecture that the set of pairwise sums of terms of this sequence (A005097) is the set of integers greater than 1, i.e.: 1+1=2, 1+2=3, ..., 5+5=10, ... (This is equivalent to Goldbach's conjecture: every even integer greater than or equal to 6 can be expressed as the sum of two odd primes.) - Lear Young, May 20 2014
See conjecture and comments from Richard R. Forberg, in Links section below, on the relationship of this sequence to rules on values of c that allow both p^q+c and p^q-c to be prime, for an infinite number of primes p. - Richard R. Forberg, Jul 13 2016
The sequence represents the minimum number Ng of gears which are needed to draw a complete graph of order p using a Spirograph(R), where p is an odd prime. The resulting graph consists of Ng hypotrochoids whose respective nodes coincide. If the teethed ring has a circumference p then Ng = (p-1)/2. Examples: A complete graph of order three can be drawn with a Spirograph(R) using a ring with 3n teeth and one gear with n teeth. n is an arbitrary number, only related to the geometry of the gears. A complete graph of order 5 can be drawn using a ring with diameter 5 and 2 gears with diameters 1 and 2 respectively. A complete graph of order 7 can be drawn using a ring with diameter 7 and 3 gears with diameters 1, 2 and 3 respectively. - Bob Andriesse, Mar 31 2017
LINKS
Richard R. Forberg, Comments on A005097
Peter Horak and Bader F. AlBdaiwi, Diameter Perfect Lee Codes, arXiv:1109.3475 [cs.IT], 2011-2012.
Daniel Kohen and Ivan Sadofschi, A New Approach on the Seating Couples Problem, arXiv:1006.2571 [math.CO], 2010.
Dhananjay P. Mehendale, On Hamilton Decompositions, arXiv:0806.0251 [math.GM], 2008.
Eric Weisstein's World of Mathematics, Legendre Symbol
FORMULA
a(n) = A006093(n)/2 = A000010(A000040(n+1))/2.
a(n) = (prime(n+1)^2-1)/(2*sigma(prime(n+1))) = (A000040(n+1)^2-1)/(2*A000203(A000040(n+1))). - Gary Detlefs, May 02 2012
a(n) = (A065091(n) - 1) / 2. - Reinhard Zumkeller, Jan 02 2013
a(n) ~ n*log(n)/2. - Ilya Gutkovskiy, Jul 11 2016
a(n) = A294507(n) (mod prime(n+1)). - Jonathan Sondow, Nov 04 2017
a(n) = A130290(n+1). - Chai Wah Wu, Jun 04 2022
MAPLE
with(numtheory): p:=n-> ithprime(n):seq((p(n+1)^2-1)/(2*sigma(p(n+1))), n= 1..64) # Gary Detlefs, May 02 2012
MATHEMATICA
Table[p=Prime[n]; (p-1)/2, {n, 2, 22}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
(Prime[Range[2, 70]]-1)/2 (* Harvey P. Dale, Jul 11 2020 *)
PROG
(PARI) forprime(p=3, 1e4, print1(p>>1", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a005097 = (`div` 2) . a065091 -- Reinhard Zumkeller, Jan 02 2013
(Magma) [n: n in [1..160] |IsPrime(2*n+1)]; // Vincenzo Librandi, Feb 16 2015
(Python)
from sympy import prime
def A005097(n): return prime(n+1)//2 # Chai Wah Wu, Jun 04 2022
CROSSREFS
Complement of A047845. Cf. A000040, A006005, A006093.
A130290 is an essentially identical sequence.
Cf. A005384 (subsequence of primes), A266400 (their indices in this sequence).
Numbers n such that 2n+k is prime: this seq(k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
Cf. also A266409, A294507.
KEYWORD
nonn,easy
STATUS
approved
Numbers k such that 2k-1 is prime.
+0
85
2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
OFFSET
1,1
COMMENTS
a(n) is the inverse of 2 modulo prime(n) for n >= 2. - Jean-François Alcover, May 02 2017
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Positions of prime numbers among odd numbers. - Zak Seidov, Mar 26 2013
Also, the integers remaining after removing every third integer following 2, and, recursively, removing every p-th integer following the next remaining entry (where p runs through the primes, beginning with 5). - Pete Klimek, Feb 10 2014
Also, numbers k such that k^2 = m^2 + p, for some integers m and every prime p > 2. Applicable m values are m = k - 1 (giving p = 2k - 1). Less obvious is: no solution exists if m equals any value in A047845, which is the complement of (A006254 - 1). - Richard R. Forberg, Apr 26 2014
If you define a different type of multiplication (*) where x (*) y = x * y + (x - 1) * (y - 1), (which has the commutative property) then this is the set of primes that follows. - Jason Atwood, Jun 16 2019
FORMULA
a(n) = (A000040(n+1) + 1)/2 = A067076(n-1) + 2 = A086801(n-1)/2 + 2.
a(n) = (1 + A065091(n))/2. - Omar E. Pol, Nov 10 2007
a(n) = sqrt((A065091^2 + 2*A065091+1)/4). - Eric Desbiaux, Jun 29 2009
a(n) = A111333(n+1). - Jonathan Sondow, Jan 20 2016
MATHEMATICA
Rest@Prime@Range@70/2 + 1/2 (* Robert G. Wilson v, Jun 16 2006 *)
Select[Range[200], PrimeQ[2#-1]&] (* Harvey P. Dale, Apr 06 2014 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
(PARI) a(n)=prime(n+1)\2+1 \\ Charles R Greathouse IV, Mar 20 2013
(Python)
from sympy import prime
def A006254(n): return prime(n+1)+1>>1 # Chai Wah Wu, Aug 02 2024
CROSSREFS
Equals A005097 + 1. A130291 is an essentially identical sequence.
Cf. A065091.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: this seq(k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
More terms from Omar E. Pol, Nov 10 2007
STATUS
approved
Numbers k such that 2*k + 3 is a prime.
+0
65
0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
OFFSET
1,3
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
n is in the sequence iff none of the numbers (n-3k)/(2k+1), 1 <= k <= (n-1)/5, is positive integer. - Vladimir Shevelev, May 31 2009
Zeta(s) = Sum_{n>=1} 1/n^s = 1/1 - 2^(-s) * Product_{p=prime=(2*A067076)+3} 1/(1 - (2*A067076+3)^(-s)). - Eric Desbiaux, Dec 15 2009
This sequence is a subsequence of A047949. - Jason Kimberley, Aug 30 2012
LINKS
Mutsumi Suzuki, Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
FORMULA
a(n) = A006254(n) - 2 = A086801(n+1)/2. [Corrected by M. F. Hasler, Feb 14 2024]
a(n) = A089253(n) - 4. - Giovanni Teofilatto, Dec 14 2003
Conjecture: a(n) = A008507(n) + n - 1 = A005097(n) - 1 = A102781(n+1) - 1. - R. J. Mathar, Jul 07 2009
a(n) = A179893(n) - A000040(n). - Odimar Fabeny, Aug 24 2010
MAPLE
select(t -> isprime(2*t+3), [$0..1000]); # Robert Israel, Feb 19 2015
MATHEMATICA
(Prime[Range[100]+1]-3)/2 (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008, modified by G. C. Greubel, May 21 2019 *)
Select[Range[0, 200], PrimeQ[2#+3]&] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(PARI) [k | k<-[0..99], isprime(2*k+3)] \\ for illustration
(PARI) A067076(n) = (prime(n+1)-3)/2 \\ M. F. Hasler, Feb 14 2024
(Magma)[n: n in [0..200]| IsPrime(2*n+3)]; // Vincenzo Librandi, Feb 23 2012
(Sage) [n for n in (0..200) if is_prime(2*n+3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), this seq(k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19). - Jason Kimberley, Sep 07 2012
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
David Williams, Aug 17 2002
EXTENSIONS
Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.
STATUS
approved
Nonnegative numbers k such that 2k+5 is prime.
+0
34
0, 1, 3, 4, 6, 7, 9, 12, 13, 16, 18, 19, 21, 24, 27, 28, 31, 33, 34, 37, 39, 42, 46, 48, 49, 51, 52, 54, 61, 63, 66, 67, 72, 73, 76, 79, 81, 84, 87, 88, 93, 94, 96, 97, 103, 109, 111, 112, 114, 117, 118, 123, 126, 129, 132, 133, 136, 138, 139, 144, 151, 153, 154, 156, 163
OFFSET
1,3
LINKS
FORMULA
a(n) = (A086304(n-1) + 1)/2, n > 1.
MATHEMATICA
(Prime[Range[3, 100]]-5)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2*# + 5] &] (* Vincenzo Librandi, Oct 16 2012 *)
PROG
(Magma) [n: n in [0..200]| IsPrime(2*n+5)] // Vincenzo Librandi, Nov 17 2010
(PARI) is(n)=isprime(2*n+5) \\ Charles R Greathouse IV, Feb 16 2017
(Sage) [n for n in (0..200) if is_prime(2*n+5) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+5) ) # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A086304.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), this seq (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Ray Chandler, Nov 29 2003
EXTENSIONS
Removed wrong comment by Ralf Stephan, Nov 17 2010
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Numbers k such that 2k-3 is prime.
+0
34
3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157, 158
OFFSET
1,1
COMMENTS
Supersequence of A063908.
Left edge of the triangle in A065305. - Reinhard Zumkeller, Jan 30 2012
LINKS
FORMULA
Half of p + 3, where p is a prime greater than 2.
A122845(a(n), 3) = 3; a(n) = A113935(n+1)/2. - Reinhard Zumkeller, Sep 14 2006
MATHEMATICA
(Prime[Range[2, 100]]+3)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[200], PrimeQ[2#-3]&] (* Harvey P. Dale, Mar 05 2022 *)
PROG
(Magma) [ n: n in [1..200] | IsPrime(2*n-3) ]; // Vincenzo Librandi, Dec 26 2010
(PARI) is(n)=isprime(2*n-3) \\ Charles R Greathouse IV, Feb 17 2017
(Sage) [n for n in (1..200) if is_prime(2*n-3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([1..200], k-> IsPrime(2*k-3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), this sequence (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 14 2004
STATUS
approved
Nonnegative numbers k such that 2k+7 is prime.
+0
32
0, 2, 3, 5, 6, 8, 11, 12, 15, 17, 18, 20, 23, 26, 27, 30, 32, 33, 36, 38, 41, 45, 47, 48, 50, 51, 53, 60, 62, 65, 66, 71, 72, 75, 78, 80, 83, 86, 87, 92, 93, 95, 96, 102, 108, 110, 111, 113, 116, 117, 122, 125, 128, 131, 132, 135, 137, 138, 143, 150, 152, 153, 155, 162
OFFSET
1,2
LINKS
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
EXAMPLE
If n=0, then 2*0 + 7 = 7 (prime).
If n=15, then 2*15 + 7 = 37 (prime).
If n=27, then 2*27 + 7 = 61 (prime).
MATHEMATICA
(Prime[Range[4, 100]]-7)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2 # + 7] &] (* Vincenzo Librandi, May 20 2014 *)
PROG
(Magma)[n: n in [0..200]| IsPrime(2*n+7)]; // Vincenzo Librandi, Dec 21 2010
(PARI) is(n)=isprime(2*n+7) \\ Charles R Greathouse IV, Feb 16 2017
(Sage) [n for n in (0..200) if is_prime(2*n+7) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+7) ) # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A153053 (Numbers n such that 2n+7 is not a prime)
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), this seq(k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Parthasarathy Nambi, May 04 2005
EXTENSIONS
More terms from Rick L. Shepherd, May 18 2005
STATUS
approved
Numbers n such that 2n - 5 is a prime.
+0
28
4, 5, 6, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 26, 29, 32, 33, 36, 38, 39, 42, 44, 47, 51, 53, 54, 56, 57, 59, 66, 68, 71, 72, 77, 78, 81, 84, 86, 89, 92, 93, 98, 99, 101, 102, 108, 114, 116, 117, 119, 122, 123, 128, 131, 134, 137, 138, 141, 143, 144, 149, 156, 158, 159, 161
OFFSET
1,1
REFERENCES
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
LINKS
FORMULA
a(n) = A067076(n) + 4. - Giovanni Teofilatto, Dec 14 2003
MATHEMATICA
(Prime[Range[2, 100]]+5)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
PROG
(PARI) a(n)=prime(n+1)\2+3 \\ Charles R Greathouse IV, Oct 30 2012
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), this sequence (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Dec 12 2003
EXTENSIONS
Corrected by Ralf Stephan, Mar 03 2004
Further correction from Jeremy Gardiner, Sep 11 2004
STATUS
approved
Numbers n such that 2n - 7 is a prime.
+0
25
5, 6, 7, 9, 10, 12, 13, 15, 18, 19, 22, 24, 25, 27, 30, 33, 34, 37, 39, 40, 43, 45, 48, 52, 54, 55, 57, 58, 60, 67, 69, 72, 73, 78, 79, 82, 85, 87, 90, 93, 94, 99, 100, 102, 103, 109, 115, 117, 118, 120, 123, 124, 129, 132, 135, 138, 139, 142, 144, 145, 150, 157, 159, 160
OFFSET
1,1
REFERENCES
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
LINKS
MATHEMATICA
Select[Range[3, 200], PrimeQ[2#-7]&] (* Harvey P. Dale, Aug 24 2014 *)
PROG
(PARI) is(n)=isprime(2*n - 7) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), this sequence (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Dec 08 2003
EXTENSIONS
Corrected by Ralf Stephan, Mar 03 2004
Further correction from Jeremy Gardiner, Sep 11 2004
STATUS
approved
Nonnegative numbers k such that 2k + 19 is prime.
+0
25
0, 2, 5, 6, 9, 11, 12, 14, 17, 20, 21, 24, 26, 27, 30, 32, 35, 39, 41, 42, 44, 45, 47, 54, 56, 59, 60, 65, 66, 69, 72, 74, 77, 80, 81, 86, 87, 89, 90, 96, 102, 104, 105, 107, 110, 111, 116, 119, 122, 125, 126, 129, 131, 132, 137, 144, 146, 147, 149, 156, 159, 164, 165
OFFSET
1,2
COMMENTS
Or, (p-19)/2 for primes p >= 19.
a(n) = (A000040(n+7) - 19)/2.
a(n) = A005097(n+6) - 9.
a(n) = A067076(n+6) - 8.
a(n) = A089038(n+5) - 7.
a(n) = A105760(n+4) - 6.
a(n) = A101448(n+3) - 4.
a(n) = A089559(n+1) - 2.
LINKS
EXAMPLE
For k = 4, 2*k+19 = 27 is not prime, so 4 is not in the sequence;
for k = 17, 2*k+19 = 53 is prime, so 17 is in the sequence.
MATHEMATICA
(Prime[Range[8, 100]]-19)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 170], PrimeQ[(2*#)+19]&] (* Vincenzo Librandi, Sep 24 2012 *)
PROG
(Magma) [ n: n in [0..165] | IsPrime(2*n+19) ];
(PARI) is(n)=isprime(2*n+19) \\ Charles R Greathouse IV, Feb 17 2017
(Sage) [n for n in (0..200) if is_prime(2*n+19) ] # G. C. Greubel, May 22 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+19) ); # G. C. Greubel, May 22 2019
CROSSREFS
Cf. A000040 (prime numbers), A153144 (2n+19 is not prime).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), this seq (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy,changed
AUTHOR
Vincenzo Librandi, Dec 19 2008
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Nonnegative numbers n such that 2*n + 15 is prime.
+0
23
1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 22, 23, 26, 28, 29, 32, 34, 37, 41, 43, 44, 46, 47, 49, 56, 58, 61, 62, 67, 68, 71, 74, 76, 79, 82, 83, 88, 89, 91, 92, 98, 104, 106, 107, 109, 112, 113, 118, 121, 124, 127, 128, 131, 133, 134, 139, 146, 148, 149, 151, 158, 161, 166
OFFSET
1,2
LINKS
FORMULA
a(n) = A086303(n)/2.
MATHEMATICA
(Prime[Range[7, 100]]-15)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2 # + 15] &] (* Vincenzo Librandi, Apr 28 2014 *)
PROG
(Magma) [n: n in [0..200] | IsPrime(2*n+15)]; // Vincenzo Librandi, Apr 28 2014
(PARI) is(n)=isprime(2*n+15) \\ Charles R Greathouse IV, Apr 28 2015
(Sage) [n for n in (0..200) if is_prime(2*n+15) ] # G. C. Greubel, May 22 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+15) ) # G. C. Greubel, May 22 2019
CROSSREFS
Cf. A086303.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), this seq (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Ray Chandler, Nov 29 2003
EXTENSIONS
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved

Search completed in 0.017 seconds