[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130290
Number of nonzero quadratic residues modulo the n-th prime.
19
1, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158
OFFSET
1,3
COMMENTS
Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.
From Vladimir Shevelev, Jun 18 2016: (Start)
a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).
Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)
a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - Nicholas Leonard, Oct 02 2022
LINKS
Eric Weisstein's World of Mathematics, Quadratic Residue
FORMULA
a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }
a(n) = A055034(A000040(n)), n>=1. - Wolfdieter Lang, Sep 20 2012
a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - M. F. Hasler, Dec 13 2019
EXAMPLE
a(1)=1 since the only nonzero element of Z/2Z equals its square.
a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.
a(1000000) = 7742931 = (prime(1000000)-1)/2.
MAPLE
A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: A000040 := proc(n): ithprime(n) end: seq(A130290(n), n=1..55); # Johannes W. Meijer, Oct 25 2012
MATHEMATICA
Quotient[Prime[Range[66]], 2] (* Vladimir Joseph Stephan Orlovsky, Sep 20 2008 *)
PROG
(PARI) A130290(n) = prime(n)>>1
(Magma) [Floor((NthPrime(n))/2): n in [1..60]]; // Vincenzo Librandi, Jan 16 2013
(Python)
from sympy import prime
def A130290(n): return prime(n)//2 # Chai Wah Wu, Jun 04 2022
CROSSREFS
Essentially the same as A005097.
Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.
Appears in A217983. - Johannes W. Meijer, Oct 25 2012
Sequence in context: A274332 A005097 A102781 * A139791 A027563 A219729
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, May 21 2007
STATUS
approved