Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Feb 04 2024 01:17:59
%S 3,4,5,7,8,10,11,13,16,17,20,22,23,25,28,31,32,35,37,38,41,43,46,50,
%T 52,53,55,56,58,65,67,70,71,76,77,80,83,85,88,91,92,97,98,100,101,107,
%U 113,115,116,118,121,122,127,130,133,136,137,140,142,143,148,155,157,158
%N Numbers k such that 2k-3 is prime.
%C Supersequence of A063908.
%C Left edge of the triangle in A065305. - _Reinhard Zumkeller_, Jan 30 2012
%H Seiichi Manyama, <a href="/A098090/b098090.txt">Table of n, a(n) for n = 1..10000</a>
%F Half of p + 3, where p is a prime greater than 2.
%F A122845(a(n), 3) = 3; a(n) = A113935(n+1)/2. - _Reinhard Zumkeller_, Sep 14 2006
%t (Prime[Range[2,100]]+3)/2 (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2010 *)
%t Select[Range[200],PrimeQ[2#-3]&] (* _Harvey P. Dale_, Mar 05 2022 *)
%o (Magma) [ n: n in [1..200] | IsPrime(2*n-3) ]; // _Vincenzo Librandi_, Dec 26 2010
%o (PARI) is(n)=isprime(2*n-3) \\ _Charles R Greathouse IV_, Feb 17 2017
%o (Sage) [n for n in (1..200) if is_prime(2*n-3) ] # _G. C. Greubel_, May 21 2019
%o (GAP) Filtered([1..200], k-> IsPrime(2*k-3) ) # _G. C. Greubel_, May 21 2019
%Y Cf. A000040, A085090, A086801.
%Y Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
%Y Numbers n such that 2n-k is prime: A006254 (k=1), this sequence (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
%K easy,nonn
%O 1,1
%A Douglas Winston (douglas.winston(AT)srupc.com), Sep 14 2004