[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative numbers k such that 2k+7 is prime.
32

%I #45 Feb 04 2024 01:19:34

%S 0,2,3,5,6,8,11,12,15,17,18,20,23,26,27,30,32,33,36,38,41,45,47,48,50,

%T 51,53,60,62,65,66,71,72,75,78,80,83,86,87,92,93,95,96,102,108,110,

%U 111,113,116,117,122,125,128,131,132,135,137,138,143,150,152,153,155,162

%N Nonnegative numbers k such that 2k+7 is prime.

%H Vincenzo Librandi, <a href="/A105760/b105760.txt">Table of n, a(n) for n = 1..1000</a>

%H Tony D. Noe and Jonathan Vos Post, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html">Primes in Fibonacci n-step and Lucas n-step Sequences,</a> J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.

%e If n=0, then 2*0 + 7 = 7 (prime).

%e If n=15, then 2*15 + 7 = 37 (prime).

%e If n=27, then 2*27 + 7 = 61 (prime).

%t (Prime[Range[4,100]]-7)/2 (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2010 *)

%t Select[Range[0, 200], PrimeQ[2 # + 7] &] (* _Vincenzo Librandi_, May 20 2014 *)

%o (Magma)[n: n in [0..200]| IsPrime(2*n+7)]; // _Vincenzo Librandi_, Dec 21 2010

%o (PARI) is(n)=isprime(2*n+7) \\ _Charles R Greathouse IV_, Feb 16 2017

%o (Sage) [n for n in (0..200) if is_prime(2*n+7) ] # _G. C. Greubel_, May 21 2019

%o (GAP) Filtered([0..200], k-> IsPrime(2*k+7) ) # _G. C. Greubel_, May 21 2019

%Y Cf. A153053 (Numbers n such that 2n+7 is not a prime)

%Y Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), this seq(k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).

%Y Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

%K easy,nonn

%O 1,2

%A _Parthasarathy Nambi_, May 04 2005

%E More terms from _Rick L. Shepherd_, May 18 2005