[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130291
Number of quadratic residues (including 0) modulo the n-th prime.
5
2, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
OFFSET
1,1
COMMENTS
The number of squares (quadratic residues including 0) modulo a prime p (sequence A096008 with every "1" prefixed by a "0") equals 1+floor(p/2), or ceiling(p/2) = (p+1)/2 if p is odd. (In fields of characteristic 2, all elements are squares.) See A130290(n)=A130291(n)-1 for number of nonzero residues. For all n>0, A130291(n+1) = A111333(n+1) = A006254(n) = A005097(n)-1 = A102781(n+1)-1 = A102781(n+1)-1 = A130290(n+1)-1.
LINKS
Eric Weisstein's World of Mathematics, Quadratic Residue
FORMULA
a(n) = floor( A000040(n)/2 )+1
EXAMPLE
a(1)=2 since both elements of Z/2Z are squares.
a(3)=0 since 0=0^2, 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are squares in Z/5Z.
a(1000000) = 7742932 = (p[1000000]+1)/2.
MATHEMATICA
Quotient[Prime[Range[200]], 2] + 1 (* Vincenzo Librandi, Jan 16 2013 *)
PROG
(PARI) A130291(n) = 1+prime(n)>>1
(Magma) [Floor((NthPrime(n))/2)+1: n in [1..60]]; // Vincenzo Librandi, Jan 16 2013
CROSSREFS
Essentially the same as A006254.
Cf. A005097 (Odd primes - 1)/2, A102781 (Integer part of n#/(n-2)#/2#), A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130290 (number of nonzero residues modulo primes).
Sequence in context: A145813 A240865 A039859 * A067835 A029011 A077117
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, May 21 2007
STATUS
approved