[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a097338 -id:a097338
     Sort: relevance | references | number | modified | created      Format: long | short | data
Nonnegative numbers k such that 2*k + 17 is prime.
+0
21
0, 1, 3, 6, 7, 10, 12, 13, 15, 18, 21, 22, 25, 27, 28, 31, 33, 36, 40, 42, 43, 45, 46, 48, 55, 57, 60, 61, 66, 67, 70, 73, 75, 78, 81, 82, 87, 88, 90, 91, 97, 103, 105, 106, 108, 111, 112, 117, 120, 123, 126, 127, 130, 132, 133, 138, 145, 147, 148, 150, 157, 160, 165
OFFSET
1,3
LINKS
MATHEMATICA
(Prime[Range[7, 100]]-17)/2
PROG
(PARI) is(n)=isprime(2*n+17) \\ Charles R Greathouse IV, Feb 17 2017
(Magma) [n: n in [0..200] | IsPrime(2*n+17) ]; // G. C. Greubel, May 22 2019
(Sage) [n for n in (0..200) if is_prime(2*n+17) ] # G. C. Greubel, May 22 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+17) ) # G. C. Greubel, May 22 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), this seq (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Numbers k such that 2*k-11 is not a prime.
+0
4
10, 13, 16, 18, 19, 22, 23, 25, 28, 30, 31, 33, 34, 37, 38, 40, 43, 44, 46, 48, 49, 51, 52, 53, 55, 58, 61, 63, 64, 65, 66, 67, 68, 70, 72, 73, 76, 77, 78, 79, 82, 83, 85, 86, 88, 90, 91, 93, 94, 97, 98, 99, 100, 103, 106, 107, 108, 109, 110, 112, 113, 114
OFFSET
1,1
COMMENTS
The terms are the values of 2*h*k + k + h + 6, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013
LINKS
FORMULA
a(n) = 5+A104275(n+1). [R. J. Mathar, Oct 22 2009]
MATHEMATICA
Select[Range[10, 200], !PrimeQ[2*#-11]&] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2012 *)
PROG
(Magma) [n: n in [7..120] | not IsPrime(2*n - 11)]; // Vincenzo Librandi, Oct 11 2012
(Python)
from sympy import isprime
def ok(n): return n > 6 and not isprime(2*n-11)
print(list(filter(ok, range(115)))) # Michael S. Branicky, Oct 13 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 17 2008
STATUS
approved
Nonnegative numbers k such that 2k + 13 is prime.
+0
22
0, 2, 3, 5, 8, 9, 12, 14, 15, 17, 20, 23, 24, 27, 29, 30, 33, 35, 38, 42, 44, 45, 47, 48, 50, 57, 59, 62, 63, 68, 69, 72, 75, 77, 80, 83, 84, 89, 90, 92, 93, 99, 105, 107, 108, 110, 113, 114, 119, 122, 125, 128, 129, 132, 134, 135, 140, 147, 149, 150, 152, 159, 162, 167
OFFSET
1,2
COMMENTS
Or, (p-13)/2 for primes p >= 13.
a(n) = (A000040(n+5) - 13)/2.
a(n) = A005097(n+4) - 6.
a(n) = A067076(n+4) - 5.
a(n) = A089038(n+3) - 4.
a(n) = A105760(n+2) - 3.
a(n) = A101448(n+1) - 1.
a(n) = A089559(n-1) + 1 for n > 1.
LINKS
EXAMPLE
For k = 7, 2*k+13 = 27 is not prime, so 7 is not in the sequence;
for k = 8, 2*k+13 = 29 is prime, so 8 is in the sequence.
MATHEMATICA
(Prime[Range[6, 100]]-13)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2#+13]&] (* Harvey P. Dale, Mar 02 2015 *)
PROG
(Magma) [ n: n in [0..200] | IsPrime(2*n+13) ];
(PARI) is(n)=isprime(2*n+13) \\ Charles R Greathouse IV, Jul 12 2016
(Sage) [n for n in (0..200) if is_prime(2*n+13) ] # G. C. Greubel, May 22 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+13) ) # G. C. Greubel, May 22 2019
CROSSREFS
Cf. A000040 (prime numbers).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), this seq (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Vincenzo Librandi, Dec 18 2008
EXTENSIONS
Edited and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Nonnegative numbers k such that 2k + 19 is prime.
+0
25
0, 2, 5, 6, 9, 11, 12, 14, 17, 20, 21, 24, 26, 27, 30, 32, 35, 39, 41, 42, 44, 45, 47, 54, 56, 59, 60, 65, 66, 69, 72, 74, 77, 80, 81, 86, 87, 89, 90, 96, 102, 104, 105, 107, 110, 111, 116, 119, 122, 125, 126, 129, 131, 132, 137, 144, 146, 147, 149, 156, 159, 164, 165
OFFSET
1,2
COMMENTS
Or, (p-19)/2 for primes p >= 19.
a(n) = (A000040(n+7) - 19)/2.
a(n) = A005097(n+6) - 9.
a(n) = A067076(n+6) - 8.
a(n) = A089038(n+5) - 7.
a(n) = A105760(n+4) - 6.
a(n) = A101448(n+3) - 4.
a(n) = A089559(n+1) - 2.
LINKS
EXAMPLE
For k = 4, 2*k+19 = 27 is not prime, so 4 is not in the sequence;
for k = 17, 2*k+19 = 53 is prime, so 17 is in the sequence.
MATHEMATICA
(Prime[Range[8, 100]]-19)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 170], PrimeQ[(2*#)+19]&] (* Vincenzo Librandi, Sep 24 2012 *)
PROG
(Magma) [ n: n in [0..165] | IsPrime(2*n+19) ];
(PARI) is(n)=isprime(2*n+19) \\ Charles R Greathouse IV, Feb 17 2017
(Sage) [n for n in (0..200) if is_prime(2*n+19) ] # G. C. Greubel, May 22 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+19) ) # G. C. Greubel, May 22 2019
CROSSREFS
Cf. A000040 (prime numbers), A153144 (2n+19 is not prime).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), this seq (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 19 2008
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Triangle read by rows: a(n,m) = If(n = 1, then 1, else Prime(n) - 1 + Sum_{k=n..m} (Prime(k + 1) - Prime(k))/2 ).
+0
0
1, 1, 3, 1, 4, 5, 1, 6, 7, 8, 1, 7, 8, 9, 11, 1, 9, 10, 11, 13, 14, 1, 10, 11, 12, 14, 15, 17, 1, 12, 13, 14, 16, 17, 19, 20, 1, 15, 16, 17, 19, 20, 22, 23, 25, 1, 16, 17, 18, 20, 21, 23, 24, 26, 29, 1, 19, 20, 21, 23, 24, 26, 27, 29, 32, 33, 1, 21, 22, 23, 25, 26, 28, 29, 31, 34, 35
OFFSET
1,3
COMMENTS
An improved triangular Goldbach sequence in which the gap sum is taken from a start at n.
EXAMPLE
1
1, 3
1, 4, 5
1, 6, 7, 8
1, 7, 8, 9, 11
1, 9, 10, 11, 13, 14
1, 10, 11, 12, 14, 15, 17
1, 12, 13, 14, 16, 17, 19, 20
1, 15, 16, 17, 19, 20, 22, 23, 25
1, 16, 17, 18, 20, 21, 23, 24, 26, 29
MATHEMATICA
t[n_, m_] := If[n == 1, 1, Prime[n] + Sum[(Prime[k + 1] - Prime[k])/2, {k, n, m}] - 1]; Table[ t[n, m], {m, 11}, {n, m}] // Flatten
CROSSREFS
Main diagonal: A078444, 2nd diagonal: A073273.
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 04 2006
STATUS
approved
Nonnegative numbers k such that 2k+7 is prime.
+0
32
0, 2, 3, 5, 6, 8, 11, 12, 15, 17, 18, 20, 23, 26, 27, 30, 32, 33, 36, 38, 41, 45, 47, 48, 50, 51, 53, 60, 62, 65, 66, 71, 72, 75, 78, 80, 83, 86, 87, 92, 93, 95, 96, 102, 108, 110, 111, 113, 116, 117, 122, 125, 128, 131, 132, 135, 137, 138, 143, 150, 152, 153, 155, 162
OFFSET
1,2
LINKS
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
EXAMPLE
If n=0, then 2*0 + 7 = 7 (prime).
If n=15, then 2*15 + 7 = 37 (prime).
If n=27, then 2*27 + 7 = 61 (prime).
MATHEMATICA
(Prime[Range[4, 100]]-7)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2 # + 7] &] (* Vincenzo Librandi, May 20 2014 *)
PROG
(Magma)[n: n in [0..200]| IsPrime(2*n+7)]; // Vincenzo Librandi, Dec 21 2010
(PARI) is(n)=isprime(2*n+7) \\ Charles R Greathouse IV, Feb 16 2017
(Sage) [n for n in (0..200) if is_prime(2*n+7) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+7) ) # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A153053 (Numbers n such that 2n+7 is not a prime)
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), this seq(k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Parthasarathy Nambi, May 04 2005
EXTENSIONS
More terms from Rick L. Shepherd, May 18 2005
STATUS
approved
Nonnegative numbers k such that 2k + 11 is prime.
+0
23
0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 21, 24, 25, 28, 30, 31, 34, 36, 39, 43, 45, 46, 48, 49, 51, 58, 60, 63, 64, 69, 70, 73, 76, 78, 81, 84, 85, 90, 91, 93, 94, 100, 106, 108, 109, 111, 114, 115, 120, 123, 126, 129, 130, 133, 135, 136, 141, 148, 150, 151, 153, 160, 163
OFFSET
1,3
COMMENTS
2 is the smallest single-digit prime and 11 is the smallest two-digit prime.
LINKS
EXAMPLE
If n=1, then 2*1 + 11 = 13 (prime).
If n=49, then 2*49 + 11 = 109 (prime).
If n=69, then 2*69 + 11 = 149 (prime).
MAPLE
select(k-> isprime(11+2*k), [$0..200])[]; # Alois P. Heinz, Jun 02 2022
MATHEMATICA
Select[Range[0, 200], PrimeQ[2# + 11] &] (* Stefan Steinerberger, Feb 28 2006 *)
PROG
(Magma) [n: n in [0..200] | IsPrime(2*n+11)] // Vincenzo Librandi, Nov 17 2010
(PARI) is(n)=isprime(2*n+11) \\ Charles R Greathouse IV, Apr 29 2015
(Sage) [n for n in (0..200) if is_prime(2*n+11) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+11) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), this seq (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Parthasarathy Nambi, Jan 24 2005
EXTENSIONS
More terms from Stefan Steinerberger, Feb 28 2006
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Positive integers n such that 2n-19 is prime.
+0
22
11, 12, 13, 15, 16, 18, 19, 21, 24, 25, 28, 30, 31, 33, 36, 39, 40, 43, 45, 46, 49, 51, 54, 58, 60, 61, 63, 64, 66, 73, 75, 78, 79, 84, 85, 88, 91, 93, 96, 99, 100, 105, 106, 108, 109, 115, 121, 123, 124, 126, 129, 130, 135, 138, 141, 144, 145, 148, 150, 151, 156, 163
OFFSET
1,1
LINKS
FORMULA
Half of p+19 where p is a prime greater than 2.
MATHEMATICA
(Prime[Range[2, 100]]+19)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[10, 200], PrimeQ[2#-19]&] (* Harvey P. Dale, May 08 2017 *)
CROSSREFS
Cf. A000040.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), this sequence (k=19).
KEYWORD
easy,nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 21 2004
STATUS
approved
Positive integers n such that 2n - 9 is prime.
+0
22
6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 34, 35, 38, 40, 41, 44, 46, 49, 53, 55, 56, 58, 59, 61, 68, 70, 73, 74, 79, 80, 83, 86, 88, 91, 94, 95, 100, 101, 103, 104, 110, 116, 118, 119, 121, 124, 125, 130, 133, 136, 139, 140, 143, 145, 146, 151, 158, 160
OFFSET
1,1
LINKS
FORMULA
Half of p+9 where p is a prime greater than 2.
MATHEMATICA
(Prime[Range[2, 100]]+9)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[4, 200], PrimeQ[2 # - 9] &] (* Vincenzo Librandi, Oct 16 2012 *)
PROG
(Magma) [n: n in [6..160] | IsPrime(2*n-9)]; // Bruno Berselli, Mar 05 2011
(PARI) is(n)=isprime(2*n-9) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), this seq(k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 15 2004
STATUS
approved
Positive integers n such that 2n-13 is prime.
+0
20
8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 25, 27, 28, 30, 33, 36, 37, 40, 42, 43, 46, 48, 51, 55, 57, 58, 60, 61, 63, 70, 72, 75, 76, 81, 82, 85, 88, 90, 93, 96, 97, 102, 103, 105, 106, 112, 118, 120, 121, 123, 126, 127, 132, 135, 138, 141, 142, 145, 147, 148, 153, 160, 162
OFFSET
1,1
LINKS
FORMULA
Half of p+13 where p is a prime greater than 2.
MATHEMATICA
(Prime[Range[2, 100]]+13)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[8, 200], PrimeQ[2#-13]&] (* Harvey P. Dale, Apr 26 2013 *)
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), this sequence (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 18 2004
STATUS
approved

Search completed in 0.011 seconds