[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005097 -id:a005097
     Sort: relevance | references | number | modified | created      Format: long | short | data
Indices of primes in A005097.
+20
2
2, 3, 4, 8, 14, 16, 22, 27, 38, 40, 48, 55, 68, 71, 75, 90, 91, 95, 102, 106, 127, 145, 149, 153, 165, 170, 194, 207, 213, 214, 218, 227, 235, 240, 255, 280, 291, 306, 308, 310, 316, 328, 362, 363, 375, 409, 416, 419, 426, 429, 433, 443, 447, 452, 485, 506, 525, 528, 535, 547, 552, 561, 566, 569, 583, 587, 615
OFFSET
1,1
LINKS
FORMULA
Other identities. For all n >= 1:
A005384(n) = A005097(a(n)).
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A266400 (MATCHING-POS 1 1 (COMPOSE prime? A005097)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 28 2016
STATUS
approved
Erroneous version of A005097.
+20
0
1, 2, 2, 3, 5, 6, 8, 9, 11, 14, 15
OFFSET
1,2
KEYWORD
dead
STATUS
approved
Sophie Germain primes p: 2p+1 is also prime.
(Formerly M0731)
+10
422
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559
OFFSET
1,1
COMMENTS
Then 2p+1 is called a safe prime: see A005385.
Primes p such that the equation phi(x) = 2p has solutions, where phi is the totient function. See A087634 for another such collection of primes. - T. D. Noe, Oct 24 2003
Subsequence of A117360. - Reinhard Zumkeller, Mar 10 2006
Let q = 2n+1. For these n (and q), the difference of two cyclotomic polynomials can be written as a cyclotomic polynomial in x^2: Phi(q,x) - Phi(2q,x) = 2x Phi(n,x^2). - T. D. Noe, Jan 04 2008
A Sophie Germain prime p is 2, 3 or of the form 6k-1, k >= 1, i.e., p = 5 (mod 6). A prime p of the form 6k+1, k >= 1, i.e., p = 1 (mod 6), cannot be a Sophie Germain prime since 2p+1 is divisible by 3. - Daniel Forgues, Jul 31 2009
Also solutions to the equation: floor(4/A000005(2*n^2+n)) = 1. - Enrique Pérez Herrero, May 03 2012
In the spirit of the conjecture related to A217788, we conjecture that for any integers n >= m > 0 there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) is prime. - Zhi-Wei Sun, Mar 26 2013
If k is the product of a Sophie Germain prime p and its corresponding safe prime 2p+1, then a(n) = (k-phi(k))/3, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
Giovanni Resta found the first Sophie Germain prime which is also a Brazilian number (A125134), 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)_73. - Bernard Schott, Mar 07 2019
For all Sophie Germain primes p >= 5, 2*p + 1 = min(A, B) where A is the smallest prime factor of 2^p - 1 and B the smallest prime factor of (2^p + 1) / 3. - Alain Rocchelli, Feb 01 2023
Consider a pair of numbers (p, 2*p+1), with p >= 3. Then p is a Sophie Germain prime iff (p-1)!^2 + 6*p == 1 (mod p*(2*p+1)). - Davide Rotondo, May 02 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92.
Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. S. Cheema, Table of n, a(n) for n = 1..100000. [This replaces an earlier b-file computed by T. D. Noe]
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
R. P. Boas & N. J. A. Sloane, Correspondence, 1974
P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, On modular categories, arXiv preprint arXiv:1310.7050 [math.QA], 2013.
Chris K. Caldwell, The Prime Glossary, Sophie Germain Prime
Andrea Del Centina, Letters of Sophie Germain preserved in Florence Historia Mathematica, Vol. 32 (2005), pp. 60-75.
Harvey Dubner, Large Sophie Germain Primes, Math. Comp., Vol. 65, No. 213 (1996), pp. 393-396.
Luis H. Gallardo and Olivier Rahavandrainy, There are finitely many even perfect polynomials over F_p with p+1 irreducible divisors, Acta Mathematica Universitatis Comenianae, Vol. 83, No. 2, 2016, 261-275.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Victor Meally, Letter to N. J. A. Sloane, no date.
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
Frans Oort, Prime numbers, 2013.
Larry Riddle, Sophie Germain and Fermat's Last Theorem, Agnes Scott College, Math. Dept., Jul, 1999.
Carlos Rivera, Puzzle 1122. OEIS A005385, The Prime Puzzles & Problems Connection.
Carlos Rivera, Puzzle 1140. Test for Sophie Germain primes, The Prime Puzzles & Problems Connection.
Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS, Vol. 13 (2013), Article A65.
Agoh Takashi, On Sophie Germain primes, Number theory (Liptovský Ján, 1999), Tatra Mt. Math. Publ., Vol. 20 (2000), pp. 65-73.
Terence Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005.
Vmoraru, PlanetMath.org, Sophie Germain prime.
Samuel S. Wagstaff, Jr., Sum of Reciprocals of Germain Primes, Journal of Integer Sequences, Vol. 24, No. 2 (2021), Article 21.9.5.
Eric Weisstein's World of Mathematics, Sophie Germain Prime.
Eric Weisstein's World of Mathematics, Integer Sequence Primes.
Samuel Yates, Sophie Germain primes, in "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991, pp. 882-886.
FORMULA
a(n) mod 10 <> 7. - Reinhard Zumkeller, Feb 12 2009
A156660(a(n)) = 1; A156874 gives numbers of Sophie Germain primes <= n. - Reinhard Zumkeller, Feb 18 2009
tau(4*a(n) + 2) = tau(4*a(n)) - 2, for n > 1. - Arkadiusz Wesolowski, Aug 25 2012
eulerphi(4*a(n) + 2) = eulerphi(4*a(n)) + 2, for n > 1. - Arkadiusz Wesolowski, Aug 26 2012
A005097 INTERSECT A000040. - R. J. Mathar, Mar 23 2017
Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024
MAPLE
A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1) then A:=A union {ithprime(n)} fi od: A:=A; # Emeric Deutsch, Dec 09 2004
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[2#+1]&]
lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *)
PROG
(Magma) [ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009
(PARI) select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)).
(PARI) forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
(PARI) is_A005384=(p->isprime(2*p+1)&&isprime(p));
{A005384_vec(N=100, p=1)=vector(N, i, until(isprime(2*p+1), p=nextprime(p+1)); p)} \\ M. F. Hasler, Mar 03 2020
(GAP) Filtered([1..1600], p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019
(Python)
from sympy import isprime, nextprime
def ok(p): return isprime(2*p+1)
def aupto(limit): # only test primes
alst, p = [], 2
while p <= limit:
if ok(p): alst.append(p)
p = nextprime(p)
return alst
print(aupto(1559)) # Michael S. Branicky, Feb 03 2021
CROSSREFS
Cf. also A000355, A156541, A156542, A156592, A161896, A156660, A156874, A092816, A023212, A007528 (primes of the form 6k-1).
For primes p that remains prime through k iterations of the function f(x) = 2x + 1: this sequence (k=1), A007700 (k=2), A023272 (k=3), A023302 (k=4), A023330 (k=5), A278932 (k=6), A138025 (k=7), A138030 (k=8).
KEYWORD
nonn,nice
STATUS
approved
Numbers k such that 2k-1 is prime.
+10
85
2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
OFFSET
1,1
COMMENTS
a(n) is the inverse of 2 modulo prime(n) for n >= 2. - Jean-François Alcover, May 02 2017
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Positions of prime numbers among odd numbers. - Zak Seidov, Mar 26 2013
Also, the integers remaining after removing every third integer following 2, and, recursively, removing every p-th integer following the next remaining entry (where p runs through the primes, beginning with 5). - Pete Klimek, Feb 10 2014
Also, numbers k such that k^2 = m^2 + p, for some integers m and every prime p > 2. Applicable m values are m = k - 1 (giving p = 2k - 1). Less obvious is: no solution exists if m equals any value in A047845, which is the complement of (A006254 - 1). - Richard R. Forberg, Apr 26 2014
If you define a different type of multiplication (*) where x (*) y = x * y + (x - 1) * (y - 1), (which has the commutative property) then this is the set of primes that follows. - Jason Atwood, Jun 16 2019
FORMULA
a(n) = (A000040(n+1) + 1)/2 = A067076(n-1) + 2 = A086801(n-1)/2 + 2.
a(n) = (1 + A065091(n))/2. - Omar E. Pol, Nov 10 2007
a(n) = sqrt((A065091^2 + 2*A065091+1)/4). - Eric Desbiaux, Jun 29 2009
a(n) = A111333(n+1). - Jonathan Sondow, Jan 20 2016
MATHEMATICA
Rest@Prime@Range@70/2 + 1/2 (* Robert G. Wilson v, Jun 16 2006 *)
Select[Range[200], PrimeQ[2#-1]&] (* Harvey P. Dale, Apr 06 2014 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
(PARI) a(n)=prime(n+1)\2+1 \\ Charles R Greathouse IV, Mar 20 2013
(Python)
from sympy import prime
def A006254(n): return prime(n+1)+1>>1 # Chai Wah Wu, Aug 02 2024
CROSSREFS
Equals A005097 + 1. A130291 is an essentially identical sequence.
Cf. A065091.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: this seq(k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
More terms from Omar E. Pol, Nov 10 2007
STATUS
approved
Numbers k such that 2*k + 3 is a prime.
+10
65
0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
OFFSET
1,3
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
n is in the sequence iff none of the numbers (n-3k)/(2k+1), 1 <= k <= (n-1)/5, is positive integer. - Vladimir Shevelev, May 31 2009
Zeta(s) = Sum_{n>=1} 1/n^s = 1/1 - 2^(-s) * Product_{p=prime=(2*A067076)+3} 1/(1 - (2*A067076+3)^(-s)). - Eric Desbiaux, Dec 15 2009
This sequence is a subsequence of A047949. - Jason Kimberley, Aug 30 2012
LINKS
Mutsumi Suzuki, Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
FORMULA
a(n) = A006254(n) - 2 = A086801(n+1)/2. [Corrected by M. F. Hasler, Feb 14 2024]
a(n) = A089253(n) - 4. - Giovanni Teofilatto, Dec 14 2003
Conjecture: a(n) = A008507(n) + n - 1 = A005097(n) - 1 = A102781(n+1) - 1. - R. J. Mathar, Jul 07 2009
a(n) = A179893(n) - A000040(n). - Odimar Fabeny, Aug 24 2010
MAPLE
select(t -> isprime(2*t+3), [$0..1000]); # Robert Israel, Feb 19 2015
MATHEMATICA
(Prime[Range[100]+1]-3)/2 (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008, modified by G. C. Greubel, May 21 2019 *)
Select[Range[0, 200], PrimeQ[2#+3]&] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(PARI) [k | k<-[0..99], isprime(2*k+3)] \\ for illustration
(PARI) A067076(n) = (prime(n+1)-3)/2 \\ M. F. Hasler, Feb 14 2024
(Magma)[n: n in [0..200]| IsPrime(2*n+3)]; // Vincenzo Librandi, Feb 23 2012
(Sage) [n for n in (0..200) if is_prime(2*n+3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), this seq(k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19). - Jason Kimberley, Sep 07 2012
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
David Williams, Aug 17 2002
EXTENSIONS
Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.
STATUS
approved
Average of twin prime pairs (A014574), divided by 2. Equivalently, 2*a(n)-1 and 2*a(n)+1 are primes.
+10
43
2, 3, 6, 9, 15, 21, 30, 36, 51, 54, 69, 75, 90, 96, 99, 114, 120, 135, 141, 156, 174, 210, 216, 231, 261, 285, 300, 309, 321, 330, 405, 411, 414, 429, 441, 510, 516, 525, 531, 546, 576, 615, 639, 645, 651, 660, 714, 726, 741, 744, 804, 810, 834, 849, 861, 894
OFFSET
1,1
COMMENTS
Intersection of A005097 and A006254. - Zak Seidov, Mar 18 2005
The only possible pairs for 2a(n)+-1 are prime/prime (this sequence), not prime/not prime (A104278), prime/notprime (A104279) and not prime/prime (A104280), ... this sequence + A104280 + A104279 + A104278 = the odd numbers.
These numbers are never k mod (2k+1) or (k+1) mod (2k+1) with 2k+1 < a(n). - Jon Perry, Sep 04 2012
Excluding the first term, all remaining terms have digital root 3, 6 or 9. - J. W. Helkenberg, Jul 24 2013
Positive numbers x such that the difference between x^2 and adjacent squares are prime (both x^2-(x-1)^2 and (x+1)^2-x^2 are prime). - Doug Bell, Aug 21 2015
FORMULA
a(n) = A014574(n)/2 = A054735(n+1)/4 = A111046(n+1)/8.
For n > 1, a(n) = 3*A002822(n-1). - Jason Kimberley, Nov 06 2015
A260689(a(n),1) = A264526(a(n)) = 1. - Reinhard Zumkeller, Nov 17 2015
From Michael G. Kaarhus, Aug 19 2022: (Start)
a(n) = (A001359(n) + 1)/2.
a(n) = (A006512(n) - 1)/2.
For n > 1, a(n) = A167379(n-1) * 3/2. (End)
MAPLE
P := select(isprime, [$1..1789]): map(p->(p+1)/2, select(p->member(p+2, P), P)); # Peter Luschny, Mar 03 2011
MATHEMATICA
Select[Range[900], And @@ PrimeQ[{-1, 1} + 2# ] &] (* Ray Chandler, Oct 12 2005 *)
PROG
(PARI) p=2; forprime(b=3, 1e4, if(b-p==2, print1((p+1)/2", ")); p=b) \\ Altug Alkan, Nov 10 2015
(Haskell)
a040040 = flip div 2 . a014574 -- Reinhard Zumkeller, Nov 17 2015
CROSSREFS
Cf. A001359, A006512, A014574, A054735, A111046, A045753 (even terms halved), A002822 (terms divided by 3).
Cf. A221310.
KEYWORD
nonn,easy
EXTENSIONS
More terms from Cino Hilliard, Oct 21 2002
Title corrected by Daniel Forgues, Jun 01 2009
Edited by Daniel Forgues, Jun 21 2009
Comment corrected by Daniel Forgues, Jul 12 2009
STATUS
approved
Nonnegative numbers k such that 2k+5 is prime.
+10
34
0, 1, 3, 4, 6, 7, 9, 12, 13, 16, 18, 19, 21, 24, 27, 28, 31, 33, 34, 37, 39, 42, 46, 48, 49, 51, 52, 54, 61, 63, 66, 67, 72, 73, 76, 79, 81, 84, 87, 88, 93, 94, 96, 97, 103, 109, 111, 112, 114, 117, 118, 123, 126, 129, 132, 133, 136, 138, 139, 144, 151, 153, 154, 156, 163
OFFSET
1,3
LINKS
FORMULA
a(n) = (A086304(n-1) + 1)/2, n > 1.
MATHEMATICA
(Prime[Range[3, 100]]-5)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2*# + 5] &] (* Vincenzo Librandi, Oct 16 2012 *)
PROG
(Magma) [n: n in [0..200]| IsPrime(2*n+5)] // Vincenzo Librandi, Nov 17 2010
(PARI) is(n)=isprime(2*n+5) \\ Charles R Greathouse IV, Feb 16 2017
(Sage) [n for n in (0..200) if is_prime(2*n+5) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+5) ) # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A086304.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), this seq (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Ray Chandler, Nov 29 2003
EXTENSIONS
Removed wrong comment by Ralf Stephan, Nov 17 2010
Definition clarified by Zak Seidov, Jul 11 2014
STATUS
approved
Numbers k such that 2k-3 is prime.
+10
34
3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157, 158
OFFSET
1,1
COMMENTS
Supersequence of A063908.
Left edge of the triangle in A065305. - Reinhard Zumkeller, Jan 30 2012
LINKS
FORMULA
Half of p + 3, where p is a prime greater than 2.
A122845(a(n), 3) = 3; a(n) = A113935(n+1)/2. - Reinhard Zumkeller, Sep 14 2006
MATHEMATICA
(Prime[Range[2, 100]]+3)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[200], PrimeQ[2#-3]&] (* Harvey P. Dale, Mar 05 2022 *)
PROG
(Magma) [ n: n in [1..200] | IsPrime(2*n-3) ]; // Vincenzo Librandi, Dec 26 2010
(PARI) is(n)=isprime(2*n-3) \\ Charles R Greathouse IV, Feb 17 2017
(Sage) [n for n in (1..200) if is_prime(2*n-3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([1..200], k-> IsPrime(2*k-3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), this sequence (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
easy,nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Sep 14 2004
STATUS
approved
a(n) = (prime(n)^2 - 1)/24.
+10
33
1, 2, 5, 7, 12, 15, 22, 35, 40, 57, 70, 77, 92, 117, 145, 155, 187, 210, 222, 260, 287, 330, 392, 425, 442, 477, 495, 532, 672, 715, 782, 805, 925, 950, 1027, 1107, 1162, 1247, 1335, 1365, 1520, 1552, 1617, 1650, 1855, 2072, 2147, 2185, 2262, 2380, 2420, 2625, 2752, 2882, 3015
OFFSET
3,2
COMMENTS
Note that p^2 - 1 is always divisible by 24 since p == 1 or 2 (mod 3), so p^2 == 1 (mod 3) and p == 1, 3, 5, or 7 (mod 8) so p^2 == 1 (mod 8). - Michael B. Porter, Sep 02 2016
For n > 3 and m > 1, a(n) = A000330(m)/(2*m + 1), where 2*m + 1 = prime(n). For example, for m = 8, 2*m + 1 = 17 = prime(7), A000330(8) = 204, 204/17 = 12 = a(7). - Richard R. Forberg, Aug 20 2013
For primes => 5, a(n) == 0 or 2 (mod 5). - Richard R. Forberg, Aug 28 2013
The only primes in this sequence are 2, 5 and 7 (checked up to n = 10^7). The set of prime factors, however, appears to include all primes. - Richard R. Forberg, Feb 28 2015
Subsequence of generalized pentagonal numbers (cf. A001318): a(n) = k_n*(3*k_n - 1)/2, for k_n in {1, -1, 2, -2, 3, -3, 4, 5, -5, -6, 7, -7, 8, 9, 10, -10, ...} = A024699(n-2)*((A000040(n) mod 6) - 3)/2, n >= 3. - Daniel Forgues, Aug 02 2016
The only primes in this sequence are indeed 2, 5 and 7. For a prime p >= 5, if both p + 1 and p - 1 contains a prime factor > 3, then (p^2 - 1)/24 = (p + 1)*(p - 1)/24 contains at least 2 prime factors, so at least one of p + 1 and p - 1 is 3-smooth. Let's call it s. Also, If (p^2 - 1)/24 is a prime, then A001222(p^2-1) = 5. Since A001222(p+1) and A001222(p-1) are both at least 2, A001222(s) <= 5 - 2 = 3. From these we can see the only possible cases are p = 7, 11 and 13. - Jianing Song, Dec 28 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 3..10000
Brady Haran and Matt Parker, Squaring Primes, Numberphile video (2018).
Carlos Rivera, Puzzle 1060. Can you find more solutions?, The Prime Puzzles and Problems Connection. [Asks for squares in this sequence]
FORMULA
a(n) = (A000040(n)^2 - 1)/24 = (A001248(n) - 1)/24. - Omar E. Pol, Dec 07 2011
a(n) = A005097(n-1)*A006254(n-1)/6. - Bruno Berselli, Dec 08 2011
a(n) = A084920(n)/24. - R. J. Mathar, Aug 23 2013
a(n) = A127922(n)/A000040(n) for n >= 3. - César Aguilera, Nov 01 2019
EXAMPLE
For n = 6, the 6th prime is 13, so a(6) = (13^2 - 1)/24 = 168/24 = 7.
MAPLE
A024702:=n->(ithprime(n)^2-1)/24: seq(A024702(n), n=3..70); # Wesley Ivan Hurt, Mar 01 2015
MATHEMATICA
(Prime[Range[3, 100]]^2-1)/24 (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
PROG
(PARI) a(n)=prime(n)^2\24 \\ Charles R Greathouse IV, May 30 2013
(PARI) is(n)=my(k); issquare(24*n+1, &k)&&isprime(k) \\ Charles R Greathouse IV, May 31 2013
CROSSREFS
Subsequence of generalized pentagonal numbers A001318.
Cf. A075888.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 11 1999
STATUS
approved
Smallest integer for which the number of divisors is the n-th prime.
+10
33
2, 4, 16, 64, 1024, 4096, 65536, 262144, 4194304, 268435456, 1073741824, 68719476736, 1099511627776, 4398046511104, 70368744177664, 4503599627370496, 288230376151711744, 1152921504606846976
OFFSET
1,1
COMMENTS
Seems to be the same as "Even numbers with prime number of divisors" - Jason Earls, Jul 04 2001
Except for the first term, smallest number == 1 (mod prime(n)) having n divisors (by Fermat's little theorem). - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003
FORMULA
a(n) = 2^(prime(n)-1) = 2^A006093(n).
a(n) = A005179(prime(n)). - R. J. Mathar, Aug 09 2019
Sum_{n>=1} 1/a(n) = A119523. - Amiram Eldar, Aug 11 2020
MATHEMATICA
Table[2^(p-1), {p, Table[Prime[n], {n, 1, 18}]}] (* Geoffrey Critzer, May 26 2013 *)
PROG
(PARI) forstep(n=2, 100000000, 2, x=numdiv(n); if(isprime(x), print(n)))
(PARI) a(n)=2^(prime(n)-1) \\ Charles R Greathouse IV, Apr 08 2012
(Python)
from sympy import isprime, divisor_count as tau
[2] + [2**(2*n) for n in range(1, 33) if isprime(tau(2**(2*n)))] # Karl V. Keller, Jr., Jul 10 2020
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, May 22 2001
STATUS
approved

Search completed in 0.062 seconds