[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085090
If 2n-1 is prime then a(n) = 2n-1, otherwise a(n) = 0.
9
0, 3, 5, 7, 0, 11, 13, 0, 17, 19, 0, 23, 0, 0, 29, 31, 0, 0, 37, 0, 41, 43, 0, 47, 0, 0, 53, 0, 0, 59, 61, 0, 0, 67, 0, 71, 73, 0, 0, 79, 0, 83, 0, 0, 89, 0, 0, 0, 97, 0, 101, 103, 0, 107, 109, 0, 113, 0, 0, 0, 0, 0, 0, 127, 0, 131, 0, 0, 137, 139, 0, 0, 0, 0, 149, 151, 0, 0, 157, 0, 0, 163
OFFSET
1,2
COMMENTS
Previous name was: Starting with n+(n-1) go on adding n-2, then n-3, etc. until one gets a prime; a(n) = smallest prime in n+(n-1)+(n-2)+...+(n-i) (with the least i that gives a prime), or 0 if no such prime exists.
LINKS
FORMULA
If 2n-1 is prime then a(n) = 2n-1, otherwise a(n) = 0. - David Wasserman, Jan 25 2005
a(A098090(n)-1)=2*A098090(n)-3; a(n)=(2*n-1)*A101264(n-1). - Reinhard Zumkeller, Sep 14 2006
a(n+1) = (4n-1)!! mod (2n+1)^2; by Gauss generalization of the Wilson's theorem. - Thomas Ordowski, Jul 23 2016
EXAMPLE
a(8) = 0 as there is no prime in the partial sum of the finite sequence 8,7,6,5,4,3,2,1.
a(7) = 13 = 7 + 6.
MATHEMATICA
apr[n_]:=Module[{cl=Select[Rest[Accumulate[Range[n, 1, -1]]], PrimeQ, 1]}, If[cl=={}, 0, First[cl]]]; Array[apr, 100] (* Harvey P. Dale, Jun 01 2012 *)
b[n_] := Mod[(-5 + 4 n)!!, (-1 + 2 n)^2]; a = Array[b, 82] (* Fred Daniel Kline, Oct 04 2018; Thomas Ordowski's formula with adjusted index *)
PROG
(PARI) a(n) = if (isprime(p=2*n-1), p, 0); \\ Michel Marcus, Aug 09 2018
(Magma) DoubleFactorial:=func< n | &*[n..2 by -2] >; [ DoubleFactorial(-5 + 4*n) mod (-1 + 2*n)^2: n in [1..90]]; // Vincenzo Librandi, Oct 04 2018
(Magma) [IsPrime(2*n-1) select 2*n-1 else 0: n in [1..90]]; // Bruno Berselli, Oct 05 2018
CROSSREFS
Cf. A122845.
Sequence in context: A173013 A223174 A225401 * A084713 A162538 A324990
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 02 2003
EXTENSIONS
More terms from David Wasserman, Jan 25 2005
New name using formula from David Wasserman, Joerg Arndt, Jul 24 2016
STATUS
approved