[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081129
Differences of Beatty sequence for cube root of 3.
3
1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2
OFFSET
0,3
LINKS
FORMULA
a(n) = floor((n+1)*3^(1/3)) - floor(n*3^(1/3)).
MATHEMATICA
Differences[Floor[Range[0, 110]Surd[3, 3]]] (* Harvey P. Dale, Apr 06 2022 *)
PROG
(PARI) a(n)=floor((n+1)*3^(1/3))-floor(n*3^(1/3))
(Magma)
A081129:= func< n | Floor((n+1)*3^(1/3)) - Floor(n*3^(1/3)) >;
[A081129(n): n in [0..120]]; // G. C. Greubel, Jan 15 2024
(SageMath)
def A081129(n): return floor((n+1)*3^(1/3)) - floor(n*3^(1/3))
[A081129(n) for n in range(121)] # G. C. Greubel, Jan 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 16 2003
STATUS
approved