[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a081129 -id:a081129
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n^(n-2) * binomial(n,2).
+10
16
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728
OFFSET
0,4
COMMENTS
Main diagonal of A081130.
a(n) is the number of partial functions f: {1,2,...,n} -> {1,2,...,n} that have exactly 2 undefined elements. - Geoffrey Critzer, Feb 08 2012
a(n+1) is the determinant of the circulant matrix having (n-1, n-2, ..., 0) as first row, for n >= 1. See A070896 for a variant, and A303260 for a related sequence. - M. F. Hasler, Apr 23 2018
a(n) is the number of birooted labeled trees on n nodes. - Brendan McKay, May 01 2018
LINKS
FORMULA
a(0) = a(1) = 0, a(n) = n^(n-2)*binomial(n,2).
E.g.f.: T(x)^2/(2(1-T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 08 2012
MATHEMATICA
Join[{0}, Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
PROG
(Magma) [n lt 2 select 0 else n^(n-2)*Binomial(n, 2): n in [0..20]]; // G. C. Greubel, May 18 2021
(Sage) [0 if (n<2) else n^(n-2)*binomial(n, 2) for n in (0..20)] # G. C. Greubel, May 18 2021
CROSSREFS
Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), this sequence (m=2), A053507 (m=3), A081196 (m=4).
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 08 2003
STATUS
approved
Beatty sequence for 3^(1/3).
+10
8
1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 100
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n*A002581). - R. J. Mathar, Apr 12 2019
MATHEMATICA
Floor[Range[100]*CubeRoot[3]] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=3^(1/3); for (n = 1, 2000, write("b059539.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
(Python)
from sympy import integer_nthroot
def A059539(n): return integer_nthroot(3*n**3, 3)[0] # Chai Wah Wu, Mar 16 2021
CROSSREFS
Beatty complement is A059540.
Partial sums of A081129.
Cf. A002581.
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved

Search completed in 0.005 seconds