[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081130
Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.
7
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 6, 6, 0, 0, 0, 1, 9, 24, 10, 0, 0, 0, 1, 12, 54, 80, 15, 0, 0, 0, 1, 15, 96, 270, 240, 21, 0, 0, 0, 1, 18, 150, 640, 1215, 672, 28, 0, 0, 0, 1, 21, 216, 1250, 3840, 5103, 1792, 36, 0, 0, 0, 1, 24, 294, 2160, 9375, 21504, 20412, 4608, 45, 0
OFFSET
0,14
COMMENTS
Rows, of the square array, are three-fold convolutions of sequences of powers.
FORMULA
T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
T(n, n) = A081131(n).
Rows have g.f. x^3/(1-k*x)^n.
From G. C. Greubel, May 14 2021: (Start)
T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
Sum_{k=0..n} T(n, n-k) = A081197(n). (End)
EXAMPLE
The array begins as:
0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, ... A000012
0, 3, 6, 9, 12, 15, ... A008585
0, 6, 24, 54, 96, 150, ... A033581
0, 10, 80, 270, 640, 1250, ... A244729
The antidiagonal triangle begins as:
0;
0, 0;
0, 0, 0;
0, 0, 1, 0;
0, 0, 1, 3, 0;
0, 0, 1, 6, 6, 0;
0, 0, 1, 9, 24, 10, 0;
MATHEMATICA
Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2021 *)
PROG
(Magma) [k eq n select 0 else (n-k)^(k-2)*Binomial(k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
(Sage) flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
(PARI)
T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2));
seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); );
seq(12) \\ Michel Marcus, May 14 2021
CROSSREFS
Main diagonal: A081131.
Rows: A000012 (n=2), A008585 (n=3), A033581 (n=4), A244729 (n=5).
Columns: A000217 (k=1), A001788 (k=2), A027472 (k=3), A038845 (k=4), A081135 (k=5), A081136 (k=6), A027474 (k=7), A081138 (k=8), A081139 (k=9), A081140 (k=10), A081141 (k=11), A081142 (k=12), A027476 (k=15).
Sequence in context: A035641 A242434 A036873 * A358623 A360224 A174428
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 08 2003
EXTENSIONS
Term a(5) corrected by G. C. Greubel, May 14 2021
STATUS
approved