[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081131
a(n) = n^(n-2) * binomial(n,2).
16
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728
OFFSET
0,4
COMMENTS
Main diagonal of A081130.
a(n) is the number of partial functions f: {1,2,...,n} -> {1,2,...,n} that have exactly 2 undefined elements. - Geoffrey Critzer, Feb 08 2012
a(n+1) is the determinant of the circulant matrix having (n-1, n-2, ..., 0) as first row, for n >= 1. See A070896 for a variant, and A303260 for a related sequence. - M. F. Hasler, Apr 23 2018
a(n) is the number of birooted labeled trees on n nodes. - Brendan McKay, May 01 2018
LINKS
FORMULA
a(0) = a(1) = 0, a(n) = n^(n-2)*binomial(n,2).
E.g.f.: T(x)^2/(2(1-T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 08 2012
MATHEMATICA
Join[{0}, Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
PROG
(Magma) [n lt 2 select 0 else n^(n-2)*Binomial(n, 2): n in [0..20]]; // G. C. Greubel, May 18 2021
(Sage) [0 if (n<2) else n^(n-2)*binomial(n, 2) for n in (0..20)] # G. C. Greubel, May 18 2021
CROSSREFS
Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), this sequence (m=2), A053507 (m=3), A081196 (m=4).
Sequence in context: A264208 A357209 A070896 * A338105 A331113 A158489
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 08 2003
STATUS
approved