Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 16 2024 13:21:55
%S 1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,
%T 1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,
%U 1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2
%N Differences of Beatty sequence for cube root of 3.
%H Harvey P. Dale, <a href="/A081129/b081129.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = floor((n+1)*3^(1/3)) - floor(n*3^(1/3)).
%t Differences[Floor[Range[0,110]Surd[3,3]]] (* _Harvey P. Dale_, Apr 06 2022 *)
%o (PARI) a(n)=floor((n+1)*3^(1/3))-floor(n*3^(1/3))
%o (Magma)
%o A081129:= func< n | Floor((n+1)*3^(1/3)) - Floor(n*3^(1/3)) >;
%o [A081129(n): n in [0..120]]; // _G. C. Greubel_, Jan 15 2024
%o (SageMath)
%o def A081129(n): return floor((n+1)*3^(1/3)) - floor(n*3^(1/3))
%o [A081129(n) for n in range(121)] # _G. C. Greubel_, Jan 15 2024
%Y Cf. A059539, A081117, A081147, A081168.
%K nonn
%O 0,3
%A _Benoit Cloitre_, Apr 16 2003