# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a081129 Showing 1-1 of 1 %I A081129 #13 Jan 16 2024 13:21:55 %S A081129 1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2, %T A081129 1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2, %U A081129 1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2 %N A081129 Differences of Beatty sequence for cube root of 3. %H A081129 Harvey P. Dale, Table of n, a(n) for n = 0..1000 %F A081129 a(n) = floor((n+1)*3^(1/3)) - floor(n*3^(1/3)). %t A081129 Differences[Floor[Range[0,110]Surd[3,3]]] (* _Harvey P. Dale_, Apr 06 2022 *) %o A081129 (PARI) a(n)=floor((n+1)*3^(1/3))-floor(n*3^(1/3)) %o A081129 (Magma) %o A081129 A081129:= func< n | Floor((n+1)*3^(1/3)) - Floor(n*3^(1/3)) >; %o A081129 [A081129(n): n in [0..120]]; // _G. C. Greubel_, Jan 15 2024 %o A081129 (SageMath) %o A081129 def A081129(n): return floor((n+1)*3^(1/3)) - floor(n*3^(1/3)) %o A081129 [A081129(n) for n in range(121)] # _G. C. Greubel_, Jan 15 2024 %Y A081129 Cf. A059539, A081117, A081147, A081168. %K A081129 nonn %O A081129 0,3 %A A081129 _Benoit Cloitre_, Apr 16 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE