[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341765
Consider gaps between successive odd primes from 3 up to prime(n+2). Let k1 be number of gaps congruent to 2 (mod 6) and let k2 be number of gaps congruent to 4 (mod 6). Then a(n) = k1 - k2.
2
1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2
OFFSET
1,2
COMMENTS
Theorem A: for all n, a(n) belongs to the set: {1,2}, for proof see A342156.
The indices n for which numbers of 1's and 2's in this sequence are equal are 2, 4, 6, 10, 12, 20, 36, 46, 48 and no other up to n=10^6.
FORMULA
a(n) = 3 - A039701(n+2). - Andrey Zabolotskiy, Nov 04 2024
MAPLE
a(1)=1 because prime(2+1)-prime(2)=5-3=2 then the gap 2 is congruent to 2 mod 6, then k1=1 and k2=0 so k1 - k2 = 1.
MATHEMATICA
k1 = 0; k2 = 0; cc = {}; Do[
gap = Prime[n + 1] - Prime[n];
If[Mod[gap/2, 3] == 1, k1 = k1 + 1,
If[Mod[gap/2, 3] == 2, k2 = k2 + 1]]; AppendTo[cc, k1 - k2];
If[k1 - k2 == 1, , If[k1 - k2 == 2, , Print[{n, k1 - k2}]]], {n, 2,
105}]; cc
PROG
(PARI) a(n) = {my(vp = vector(n+1, k, prime(k+1)), dp = vector(#vp-1, k, (vp[k+1] - vp[k])/2)); my(s=0); for (k=1, #dp, if ((dp[k]%3)==1, s++); if ((dp[k]%3) == 2, s--)); s; } \\ Michel Marcus, Feb 27 2021
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 19 2021
EXTENSIONS
Name edited by Andrey Zabolotskiy, Nov 04 2024
STATUS
approved