OFFSET
0,1
COMMENTS
Let S(0) = 3; obtain S(k) from S(k-1) by applying the morphism 3 -> 333334, 4 -> 3333334; sequence is S(0), S(1), S(2), ...
More generally, for a(n,m) = floor((n+1)*sqrt(m^2+ 1)) - floor(n*sqrt(m^2+1)) start with m and apply the morphism: m -> m^(2m-1), m+1; m+1 -> m^(2m), m+1.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = floor((n+1)*sqrt(10)) - floor(n*sqrt(10)).
MATHEMATICA
Differences[Floor[Sqrt[10]*Range[0, 120]]] (* G. C. Greubel, Jan 15 2024 *)
PROG
(PARI) a(n)=floor((n+1)*sqrt(10))-floor(n*sqrt(10))
(Magma)
A081168:= func< n | Floor((n+1)*Sqrt(10)) - Floor(n*Sqrt(10)) >;
[A081168(n): n in [0..120]]; // G. C. Greubel, Jan 15 2024
(SageMath)
def A081168(n): return floor((n+1)*sqrt(10)) - floor(n*sqrt(10))
[A081168(n) for n in range(121)] # G. C. Greubel, Jan 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 16 2003
STATUS
approved