[go: up one dir, main page]

Vai al contenuto

Germe di funzione

Da Wikipedia, l'enciclopedia libera.

In matematica, un germe di funzione (continua, differenziabile o analitica) è una classe di equivalenza di funzioni (continue. differenziabili o analitiche) da uno spazio topologico a un altro (spesso dalla retta reale a se stessa), raggruppate insieme sulla base della loro uguaglianza sull'intorno di un punto fissato sul loro dominio di definizione. Allo stesso modo, un germe di insiemi è una classe di equivalenza di sottoinsiemi di un dato spazio topologico, raggruppati insieme sulla base della loro uguaglianza sull'intorno di un punto fissato appartenente alla loro intersezione.

Definizione formale

[modifica | modifica wikitesto]

Due funzioni e tra lo stesso spazio topologico e un insieme si dicono equivalenti vicino a un punto nel loro dominio, se esiste un intorno aperto di in su cui coincidono, cioè

Questa è una relazione di equivalenza sullo spazio delle mappe tra e . Per la dimostrazione, è sufficiente notare che l'uguaglianza è usata nella sua definizione: allora la riflessività e la simmetria sono conseguenze immediate. Per la transitività, date le funzioni tali che su e su , allora su .

Le singole classi di equivalenza si dicono germi di funzioni nel punto e saranno della forma

Lo spazio dei germi di funzioni si dice una fibra di funzioni in .

  • Nicolas Bourbaki, General Topology. Chapters 1-4, paperback ed., Springer-Verlag, 1989, ISBN 3-540-64241-2.
  • Raghavan Narsimhan, Analysis on Real and Complex Manifolds, 2nd ed., chapter 2, paragraph 2.1, "Basic Definitions"., North-Holland Elsevier, 1973, ISBN 0-7204-2501-8.
  • Robert C. Gunning and Hugo Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, 1965.
  • Giuseppe Tallini, Varietà differenziabili e coomologia di De Rham (Differentiable manifolds and De Rham cohomology), Edizioni Cremonese, 1973, ISBN 88-7083-413-1.

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica