[go: up one dir, main page]

login
Search: a002110 -id:a002110
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least integer of each prime signature A124832; also products of primorial numbers A002110.
+20
601
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
OFFSET
1,2
COMMENTS
All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".
YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.
Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT]
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.
G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.
Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.
FORMULA
What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020
EXAMPLE
The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
MAPLE
isA025487 := proc(n)
local pset, omega ;
pset := sort(convert(numtheory[factorset](n), list)) ;
omega := nops(pset) ;
if op(-1, pset) <> ithprime(omega) then
return false;
end if;
for i from 1 to omega-1 do
if padic[ordp](n, ithprime(i)) < padic[ordp](n, ithprime(i+1)) then
return false;
end if;
end do:
true ;
end proc:
A025487 := proc(n)
option remember ;
local a;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA025487(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A025487(n), n=1..100) ; # R. J. Mathar, May 25 2017
MATHEMATICA
PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
(* Second program: generate all terms m <= A002110(n): *)
f[n_] := {{1}}~Join~
Block[{lim = Product[Prime@ i, {i, n}],
ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
Map[Block[{w = #, k = 1},
Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
Do[
If[# < lim,
Sow[#]; k = 1,
If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
{i, Infinity}] ][[-1]]
] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
PROG
(PARI) isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) factfollow(n)={local(fm, np, n2);
fm=factor(n); np=matsize(fm)[1];
if(np==0, return([2]));
n2=n*nextprime(fm[np, 1]+1);
if(np==1||fm[np, 2]<fm[np-1, 2], [n*fm[np, 1], n2], [n2])}
al(n) = {local(r, ms); r=vector(n);
ms=[1];
for(k=1, n,
r[k]=ms[1];
ms=vecsort(concat(vector(#ms-1, j, ms[j+1]), factfollow(ms[1]))));
r} /* Franklin T. Adams-Watters, Dec 01 2011 */
(PARI) is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2], , 4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
(PARI) upto(Nmax)=vecsort(concat(vector(logint(Nmax, 2), n, select(t->t<=Nmax, if(n>1, [factorback(primes(#p), Vecrev(p)) || p<-partitions(n)], [1, 2]))))) \\ M. F. Hasler, Jul 17 2019
(PARI)
\\ For fast generation of large number of terms, use this program:
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista, 2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista, t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
v025487 = A025487list(101);
A025487(n) = v025487[n];
for(n=1, #v025487, print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
(Haskell)
import Data.Set (singleton, fromList, deleteFindMin, union)
a025487 n = a025487_list !! (n-1)
a025487_list = 1 : h [b] (singleton b) bs where
(_ : b : bs) = a002110_list
h cs s xs'@(x:xs)
| m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
| otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 06 2013
(Sage)
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
N = 2310
nmax = 2^floor(log(N, 2))
sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
# Giuseppe Coppoletta, Jan 26 2015
CROSSREFS
Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.
KEYWORD
nonn,easy,nice,core
EXTENSIONS
Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010
STATUS
approved
Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.
+20
70
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
OFFSET
0,4
COMMENTS
The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019
FORMULA
a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024
EXAMPLE
For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
MATHEMATICA
nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(Scheme, two versions)
(definec (A276150 n) (if (zero? n) 0 (+ 1 (A276150 (- n (A002110 (A276084 n)))))))
(define (A276150 n) (A001222 (A276086 n)))
(Python)
from sympy import prime, primefactors
def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
def a276086(n):
i=0
m=pr=1
while n>0:
i+=1
N=prime(i)*pr
if n%N!=0:
m*=(prime(i)**((n%N)/pr))
n-=n%N
pr=N
return m
def a(n): return Omega(a276086(n))
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
(PARI) A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
CROSSREFS
Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.
KEYWORD
nonn,look,base
AUTHOR
Antti Karttunen, Aug 22 2016
STATUS
approved
Partial sums of A002110, the primorial numbers.
+20
54
1, 3, 9, 39, 249, 2559, 32589, 543099, 10242789, 233335659, 6703028889, 207263519019, 7628001653829, 311878265181039, 13394639596851069, 628284422185342479, 33217442899375387209, 1955977793053588026279, 119244359152460559009549, 7977565910232727614888639
OFFSET
0,2
COMMENTS
After 3, this is never prime because all values thereafter are multiples of 3. Starting from a(6) all are also multiples of 17. - Jonathan Vos Post, Feb 10 2010
Starting from a(162) all are also multiples of 967. - Alex Ratushnyak, May 14 2013
Repunits in primorial base, A049345. - Antti Karttunen, Aug 21 2016
LINKS
Soumyadeep Dhar, Table of n, a(n) for n = 0..350 (terms up to a(100) from T. D. Noe)
FORMULA
a(n) = Sum_{k=0..n} prime(k)#, where prime(n)# = A002110(n).
a(n) = A276085(A002110(1+n)). - Antti Karttunen, Aug 21 2016
EXAMPLE
a(3) = 39 = (1 + 2 + 6 + 30), where A002110 = (1, 2, 6, 30, 210, 2310,...).
MAPLE
b:= proc(n) option remember; `if`(n=0, [1$2], (h->
(p-> [p, p+h[2]])(ithprime(n)*h[1]))(b(n-1)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..19); # Alois P. Heinz, Feb 23 2022
MATHEMATICA
Table[s = 1; Do[s = 1 + s*Prime[i], {i, n, 1, -1}]; s, {n, 0, 20}] (* T. D. Noe, May 03 2013 *)
Accumulate[FoldList[Times, 1, Prime[Range[20]]]] (* Harvey P. Dale, Feb 05 2015 *)
PROG
(PARI) a(n)=if(n==0, return(1)); my(P=1, s=1); forprime(p=2, prime(n), s+=P*=p); s \\ Charles R Greathouse IV, Feb 05 2014
(Python)
from itertools import chain, accumulate, count, islice
from operator import mul
from sympy import prime
def A143293_gen(): # generator of terms
return accumulate(accumulate(chain((1, ), (prime(n) for n in count(1))), mul))
A143293_list = list(islice(A143293_gen(), 20)) # Chai Wah Wu, Feb 23 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Aug 05 2008
EXTENSIONS
a(11)-a(19) from Jonathan Vos Post, Feb 10 2010
STATUS
approved
If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).
+20
41
1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
OFFSET
0,2
COMMENTS
a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.
FORMULA
a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019
MATHEMATICA
Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(PARI) A283477(n) = prod(i=0, exponent(n), if(bittest(n, i), vecprod(primes(1+i)), 1)) \\ Edited by M. F. Hasler, Nov 11 2019
(Scheme)
(define (A283477 n) (A108951 (A019565 n)))
;; Recursive "binary tree" implementation, using memoization-macro definec:
(definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
(Python)
from sympy import prime, primerange, factorint
from operator import mul
from functools import reduce
def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
def a108951(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
def a(n): return a108951(a019565(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
(Python)
from sympy import primorial
from math import prod
def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1], 1) if b =='1') # Chai Wah Wu, Dec 08 2022
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2017
EXTENSIONS
More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019
STATUS
approved
a(n) is the sum of the divisors of the n-th primorial: a(n) = A000203(A002110(n)).
+20
27
1, 3, 12, 72, 576, 6912, 96768, 1741824, 34836480, 836075520, 25082265600, 802632499200, 30500034969600, 1281001468723200, 56364064623820800, 2705475101943398400, 146095655504943513600, 8765739330296610816000, 543475838478389870592000, 36956357016530511200256000
OFFSET
0,2
LINKS
Rafael Jakimczuk, Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts, International Mathematical Forum, Vol. 12, No. 7 (2017), pp. 331-338.
FORMULA
a(n+1) = a(n)*(prime(n) + 1) = a(n)*A028815(n) (quotient=n-th prime+1 starting with 2).
a(n) ~ (6/Pi^2) * exp(gamma) * A002110(n) * log(prime(n)) + O(A002110(n)) (Jakimczuk, 2017). - Amiram Eldar, Feb 17 2021
a(n) = a(n-1) * A008864(n). - Flávio V. Fernandes, Mar 20 2021
MAPLE
a:= n-> mul(1+ithprime(j), j=1..n): seq(a(n), n=0..20); # Zerinvary Lajos, Aug 24 2008
MATHEMATICA
Table[Product[1 + Prime[i], {i, n-1}], {n, 100}] (* Geoffrey Critzer, Dec 01 2014 *)
PROG
(PARI) a(n)=prod(i=1, n, prime(i)+1) \\ Charles R Greathouse IV, Feb 13 2013
(Magma) [1/2*&*[(1+NthPrime(k)): k in [0..n-1]]: n in [1..19]]; // Vincenzo Librandi, May 08 2017
(SageMath)
def A054640(n): return product(nth_prime(j)+1 for j in range(1, n+1))
[A054640(n) for n in range(41)] # G. C. Greubel, Aug 05 2024
KEYWORD
nonn
AUTHOR
Labos Elemer, May 15 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Apr 01 2021
STATUS
approved
Numbers that are products of distinct primorial numbers (see A002110).
+20
26
1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, 4620, 6300, 12600, 13860, 27720, 30030, 37800, 60060, 69300, 75600, 138600, 180180, 360360, 415800, 485100, 510510, 831600, 900900, 970200, 1021020, 1801800, 2910600, 3063060, 5405400
OFFSET
1,2
COMMENTS
Conjecture: every odd prime p is either adjacent to a term of A129912 or a prime distance q from some term of A129912, where q < p. - Bill McEachen, Jun 03 2010, edited for clarity in Feb 26 2019
The first 2^20 terms k > 2 of A283477 all satisfy also the condition that the differences k-A151799(k) and A151800(k)-k are always either 1 or prime, like is also conjectured to hold for A002182 (cf. also the conjecture given in A117825). However, for A025487, which is a supersequence of both sequences, this is not always true: 512 is a member of A025487, but A151800(512) = 521, with 521 - 512 = 9, which is a composite number. - Antti Karttunen, Feb 26 2019
REFERENCES
CRC Standard Mathematical Tables, 28th Ed., CRC Press
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Bill McEachen, Normalized A129912.
Robert Potter, Primorial Conjecture.
John Sokol, Sokol's Prime Conjecture, 2002.
Wikipedia, Primorial.
FORMULA
Apart from 1 and 2, numbers of the form 2^k(1)*3^k(2)*5^k(3)*...*p(s)^k(s), where p(s) is s-th prime, k(i)>0 for i=1..s, k(i)-k(i-1) = 0 or 1 for i=2..s and |{k(1),k(2),..,k(s)}|=k(1). - Vladeta Jovovic, Jun 14 2007
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/A002110(n)) = 1.8177952875... . - Amiram Eldar, Jun 03 2023
EXAMPLE
For s = 4 there are 8 (generally 2^(s-1)) such numbers: 210 = 2*3*5*7, 420 = 2^2*3*5*7 = (2*3*5*7)*2, 1260 = 2^2*3^2*5*7 = (2*3*5*7)*(2*3), 6300 = 2^2*3^2*5^2*7 = (2*3*5*7)*(2*3*5), 2520 = 2^3*3^2*5*7 = (2*3*5*7)*(2*3)*2, 12600 = 2^3*3^2*5^2*7 = (2*3*5*7)*(2*3*5)*2, 37800 = 2^3*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3), 75600 = 2^4*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3)*2.
MATHEMATICA
Clear[f]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m-1], m++]; f[m] (* Jean-François Alcover, Mar 03 2014 *) (* or *)
pr[n_] := Product[Prime[n + 1 - i]^i, {i, n}]; upto[mx_] := Block[{ric, j = 1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1, Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip + 1, ex - 1]]]]; Sort@ Reap[ Sow[1]; While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]];
upto[10^30] (* faster, Giovanni Resta, Apr 02 2017 *)
PROG
(PARI) is(n)=my(o=valuation(n, 2), t); if(o<1||n<2, return(n==1)); n>>=o; forprime(p=3, , t=valuation(n, p); n/=p^t; if(t>o || t<o-1, return(0)); if(t==0, return(n==1)); o=t) \\ Charles R Greathouse IV, Oct 22 2015
CROSSREFS
Subsequence of A025487. Sequence A283477 sorted into ascending order.
KEYWORD
easy,nonn
AUTHOR
Bill McEachen, Jun 05 2007, Jun 06 2007, Jul 06 2007, Aug 07 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jun 09 2007, Aug 08 2007
I corrected the Potter link to reflect its relocation. - Bill McEachen, Sep 12 2009
I added link to Wikicommons image. - Bill McEachen, Sep 16 2009
I again corrected the Potter link for its relocation - Bill McEachen, May 30 2013
STATUS
approved
Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.
+20
26
1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
OFFSET
1,2
COMMENTS
When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019
LINKS
FORMULA
For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.
MATHEMATICA
Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
PROG
(PARI) A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, , if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
(PARI)
A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
A276084(n) = { for(i=1, oo, if(n%prime(i), return(i-1))); }
A329900(n) = if(n%2, 1, prime(A276084(n))*A329900(A111701(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2019
STATUS
approved
The first primorial based variant of arithmetic derivative: a(prime(i)) = A002110(i-1), where prime(i) = A000040(i), a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.
+20
23
0, 0, 1, 2, 4, 6, 7, 30, 12, 12, 17, 210, 20, 2310, 67, 28, 32, 30030, 33, 510510, 44, 104, 431, 9699690, 52, 60, 4633, 54, 148, 223092870, 71, 6469693230, 80, 652, 60077, 192, 84, 200560490130, 1021039, 6956, 108, 7420738134810, 229, 304250263527210, 884, 114, 19399403, 13082761331670030, 128, 420, 145, 90124, 9292, 614889782588491410, 135, 1116, 324
OFFSET
0,4
FORMULA
a(n) = n * Sum e_j * A276085(p_j)/p_j for n = Product p_j^e_j, where for primes p, A276085(p) = A002110(A000720(p)-1).
a(n) = n * Sum e_j * (p_j)#/(p_j^2) for n = Product p_j^e_j with (p_j)# = A034386(p_j).
For all n >= 0, A276150(a(n)) = A328771(n).
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1])-1)/f[i, 1]));
(PARI) A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1]))/(f[i, 1]^2)));
CROSSREFS
Cf. A042965 (indices of even terms), A016825 (of odd terms), A152822 (antiparity of terms), A373992 (indices of multiples of 3), A374212 (2-adic valuation), A374213 (3-adic valuation), A374123 [a(n) mod 360].
Cf. A374031 [gcd(a(n), A276085(n))], A374116 [gcd(a(n), A328845(n))].
For variants of the same formula, see A003415, A258851, A328769, A328845, A328846, A371192.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2019
STATUS
approved
Number of primes <= product of first n primes, A002110(n).
+20
21
0, 1, 3, 10, 46, 343, 3248, 42331, 646029, 12283531, 300369796, 8028643010, 259488750744, 9414916809095, 362597750396740, 15397728527812858, 742238179058722891, 40068968501510691894, 2251262473052300960826, 139566579945945392719413
OFFSET
0,3
LINKS
David Baugh, Table of n, a(n) for n = 0..19 (terms n = 18..19 found using Kim Walisch's primecount program).
FORMULA
a(n) = A000720(A002110(n)). - Michel Marcus, Aug 25 2014
MAPLE
seq(numtheory:-pi(mul(ithprime(i), i=1..n)), n=0..10); # Robert Israel, Aug 25 2014
MATHEMATICA
a=1; Table[a=a*Prime[n]; PrimePi[a], {n, 12}]
Join[{0}, PrimePi/@FoldList[Times, Prime[Range[12]]]] (* Harvey P. Dale, Jan 28 2019 *)
PROG
(PARI) t=1; forprime(p=2, 66, print1(primepi(t), ", "); t*=p); \\ Joerg Arndt, Aug 25 2014
(Sage) [prime_pi(sloane.A002110(n)) for n in range (14)] # Giuseppe Coppoletta, Mar 02 2015
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
James D. Ausfahl, gandalf(AT)hrn.office.ssi.net
EXTENSIONS
More terms from David W. Wilson
a(10)-a(13) from Paul Zimmermann
a(14)-a(15) from Donovan Johnson, Mar 01 2010
a(16)-a(17) from Henri Lifchitz, Aug 25 2014
a(18)-a(19) from David Baugh, Sep 29 2020
STATUS
approved
Greatest primorial number (A002110) which divides n.
+20
21
1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6
OFFSET
1,2
FORMULA
From Antti Karttunen, Aug 30 2016: (Start)
a(n) = A002110(A276084(n)).
a(n) = n/A111701(n).
A276157(n) = A260188(n)/a(n).
(End)
EXAMPLE
a(30) = 30 because 30=2*3*5, a(15) = 1 because 15=3*5.
MAPLE
N:= 1000: # to get a(1)..a(N)
P:= 1: p:= 1:
A:= Vector(N, 1):
do
p:= nextprime(p);
P:= P*p;
if P > N then break fi;
A[[seq(i, i=P..N, P)]]:= P;
od:
convert(A, list); # Robert Israel, Aug 30 2016
MATHEMATICA
Table[k = 1; While[Divisible[n, Times @@ Prime@ Range@ k], k++]; Times @@ Prime@ Range[k - 1], {n, 120}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme) (define (A053589 n) (A002110 (A276084 n))) ;; Antti Karttunen, Aug 30 2016
(PARI) a(n)=my(f=factor(n), r = 1, k = 1, p); while(k<=matsize(f)[1], p=prime(k); if(f[k, 1]!=p, return(r)); r*=p; k++) ; r
a(n) = my(r = 1, p = 2); while(n/p==n\p, r*=p; p=nextprime(p+1)); r
\\ list of all terms up to n#.
lista(n) = my(l = List([1]), k, s=1); forprime(i=2, n, for(j=1, i-1, for(k=1, s, listput(l, l[k]))); l[#l]*=i; s=#l); l \\ David A. Corneth, Aug 30 2016
(PARI) a(n)=my(s=1); forprime(p=2, , if(n%p, return(s), s *= p)) \\ Charles R Greathouse IV, Sep 07 2016
KEYWORD
nonn,easy
AUTHOR
Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Oct 02 2000
STATUS
approved

Search completed in 0.691 seconds