[go: up one dir, main page]

login
A029931
If 2n = Sum 2^e_i, a(n) = Sum e_i.
308
0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
OFFSET
0,3
COMMENTS
Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024
LINKS
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197, ex. 10. See also DOI.
Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. (See Section 3, Theorem 21 and Section 8, Theorem 50)
FORMULA
a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016
EXAMPLE
14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
0
1
2 3
3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - Gus Wiseman, Jul 22 2019
MAPLE
HammingWeight := n -> add(i, i = convert(n, base, 2)):
a := proc(n) option remember; `if`(n = 0, 0,
ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
MATHEMATICA
a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a, 78, 0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
PROG
(PARI) for(n=0, 100, l=length(binary(n)); print1(sum(i=1, l, component(binary(n), i)*(l-i+1)), ", "))
(PARI) a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
(Haskell)
a029931 = sum . zipWith (*) [1..] . a030308_row
-- Reinhard Zumkeller, Feb 28 2014
(Python)
def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1], 1)) # Chai Wah Wu, Dec 20 2022
(C#)
ulong A029931(ulong n) {
ulong result = 0, counter = 1;
while(n > 0) {
if (n % 2 == 1)
result += counter;
counter++;
n /= 2;
}
return result;
} // Frank Hollstein, Jan 07 2023
CROSSREFS
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.
Sequence in context: A203899 A202704 A273004 * A350311 A331297 A322806
KEYWORD
nonn,easy,nice,tabf,look
EXTENSIONS
More terms from Erich Friedman
STATUS
approved