Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Jan 12 2020 12:47:47
%S 1,2,1,4,1,3,1,8,1,2,1,6,1,2,1,16,1,3,1,4,1,2,1,12,1,2,1,4,1,5,1,32,1,
%T 2,1,9,1,2,1,8,1,3,1,4,1,2,1,24,1,2,1,4,1,3,1,8,1,2,1,10,1,2,1,64,1,3,
%U 1,4,1,2,1,18,1,2,1,4,1,3,1,16,1,2,1,6,1,2,1,8,1,5,1,4,1,2,1,48,1,2,1,4,1,3,1,8,1
%N Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.
%C When applied to arbitrary n, the "primorial deflation" (term coined by _Matthew Vandermast_ in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
%C According to _Daniel Suteu_, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - _Antti Karttunen_, Dec 29 2019
%H Antti Karttunen, <a href="/A329900/b329900.txt">Table of n, a(n) for n = 1..65537</a>
%F For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
%F For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
%F A108951(a(n)) = A328479(n), for n >= 1.
%F a(A108951(n)) = n, for n >= 1.
%F a(A328479(n)) = a(n), for n >= 1.
%F a(A328478(n)) = 1, for n >= 1.
%F a(A002110(n)) = A000040(n), for n >= 1.
%F a(A000142(n)) = A307035(n), for n >= 0.
%F a(A283477(n)) = A019565(n), for n >= 0.
%F a(A329886(n)) = A005940(1+n), for n >= 0.
%F a(A329887(n)) = A163511(n), for n >= 0.
%F a(A329602(n)) = A329888(n), for n >= 1.
%F a(A025487(n)) = A181815(n), for n >= 1.
%F a(A124859(n)) = A181819(n), for n >= 1.
%F a(A181817(n)) = A025487(n), for n >= 1.
%F a(A181821(n)) = A122111(n), for n >= 1.
%F a(A002182(n)) = A329902(n), for n >= 1.
%F a(A260633(n)) = A329889(n), for n >= 1.
%F a(A033833(n)) = A330685(n), for n >= 1.
%F a(A307866(1+n)) = A330686(n), for n >= 1.
%F a(A330687(n)) = A330689(n), for n >= 1.
%t Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* _Michael De Vlieger_, Dec 28 2019 *)
%t Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* _Michael De Vlieger_, Jan 11 2020 *)
%o (PARI) A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
%o (PARI)
%o A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
%o A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
%o A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));
%Y A left inverse of A108951. Coincides with A319626 on A025487.
%Y Cf. A002110, A002182, A111701, A181815, A181817, A181819, A181821, A276084, A304886, A319626, A319627, A328478, A328479, A329889, A329902, A330685, A330686, A330689.
%K nonn
%O 1,2
%A _Antti Karttunen_, Dec 22 2019