[go: up one dir, main page]

login
A053589
Greatest primorial number (A002110) which divides n.
23
1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6
OFFSET
1,2
FORMULA
From Antti Karttunen, Aug 30 2016: (Start)
a(n) = A002110(A276084(n)).
a(n) = n/A111701(n).
A276157(n) = A260188(n)/a(n).
(End)
EXAMPLE
a(30) = 30 because 30=2*3*5, a(15) = 1 because 15=3*5.
MAPLE
N:= 1000: # to get a(1)..a(N)
P:= 1: p:= 1:
A:= Vector(N, 1):
do
p:= nextprime(p);
P:= P*p;
if P > N then break fi;
A[[seq(i, i=P..N, P)]]:= P;
od:
convert(A, list); # Robert Israel, Aug 30 2016
MATHEMATICA
Table[k = 1; While[Divisible[n, Times @@ Prime@ Range@ k], k++]; Times @@ Prime@ Range[k - 1], {n, 120}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme) (define (A053589 n) (A002110 (A276084 n))) ;; Antti Karttunen, Aug 30 2016
(PARI) a(n)=my(f=factor(n), r = 1, k = 1, p); while(k<=matsize(f)[1], p=prime(k); if(f[k, 1]!=p, return(r)); r*=p; k++) ; r
a(n) = my(r = 1, p = 2); while(n/p==n\p, r*=p; p=nextprime(p+1)); r
\\ list of all terms up to n#.
lista(n) = my(l = List([1]), k, s=1); forprime(i=2, n, for(j=1, i-1, for(k=1, s, listput(l, l[k]))); l[#l]*=i; s=#l); l \\ David A. Corneth, Aug 30 2016
(PARI) a(n)=my(s=1); forprime(p=2, , if(n%p, return(s), s *= p)) \\ Charles R Greathouse IV, Sep 07 2016
KEYWORD
nonn,easy
AUTHOR
Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Oct 02 2000
STATUS
approved