[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304886
Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).
6
0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
OFFSET
1,5
COMMENTS
Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.
FORMULA
For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019
EXAMPLE
Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
n A025487(n) Row n
--------------------------------
1 1 0
2 2 1
3 4 1,1
4 6 2
5 8 1,1,1
6 12 1,2
7 16 1,1,1,1
8 24 1,1,2
9 30 3
10 32 1,1,1,1,1
11 36 2,2
12 48 1,1,1,2
13 60 1,3
14 64 1,1,1,1,1,1
15 72 1,2,2
16 96 1,1,1,1,2
17 120 1,1,3
18 128 1,1,1,1,1,1,1
19 144 1,1,2,2
20 180 2,3
...
MATHEMATICA
(* Simple (A025487(n) < 10^5): *)
{{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
(* Efficient (A025487(n) < 10^23): *)
f[n_] := Block[{ww, g, h},
g[x_] := Apply[Times,
MapIndexed[Prime[First@ #2]^#1 &, x]];
h[x_] := Reverse@
Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
Length@ NestWhileList[NextPrime@ # &, 1,
Times @@ {##} <= n &, All] ];
Map[h, SortBy[Flatten[#, 1], g]] &@
Map[Block[{w = #, k = 1},
Apply[
Join, {{ConstantArray[1, Length@ w]},
If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
Do[
If[# < n,
Sow[w]; k = 1,
If[k >= Length@ w, Break[], k++]] &@
g@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k],
k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400
CROSSREFS
Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.
Sequence in context: A296081 A074064 A275215 * A352080 A295632 A139549
KEYWORD
nonn,tabf
AUTHOR
Michael De Vlieger, May 21 2018
STATUS
approved