[go: up one dir, main page]

login
A276075
a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).
24
0, 1, 2, 2, 6, 3, 24, 3, 4, 7, 120, 4, 720, 25, 8, 4, 5040, 5, 40320, 8, 26, 121, 362880, 5, 12, 721, 6, 26, 3628800, 9, 39916800, 5, 122, 5041, 30, 6, 479001600, 40321, 722, 9, 6227020800, 27, 87178291200, 122, 10, 362881, 1307674368000, 6, 48, 13, 5042, 722, 20922789888000, 7, 126, 27, 40322, 3628801, 355687428096000, 10, 6402373705728000, 39916801, 28, 6, 726, 123
OFFSET
1,3
COMMENTS
Additive with a(p^e) = e * (PrimePi(p)!), where PrimePi(n) = A000720(n).
a(3181) has 1001 decimal digits. - Michael De Vlieger, Dec 24 2017
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..3180 (First 120 terms from Antti Karttunen).
FORMULA
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A000142(A055396(n))).
Other identities.
For all n >= 0:
a(A276076(n)) = n.
a(A002110(n)) = A007489(n).
a(A019565(n)) = A059590(n).
a(A206296(n)) = A276080(n).
a(A260443(n)) = A276081(n).
For all n >= 1:
a(A000040(n)) = n! = A000142(n).
a(A076954(n-1)) = A033312(n).
MATHEMATICA
Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A276075 n) (cond ((= 1 n) (- n 1)) (else (+ (* (A067029 n) (A000142 (A055396 n))) (A276075 (A028234 n))))))
(Python)
from sympy import factorint, factorial as f, primepi
def a(n):
F=factorint(n)
return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F)
print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved