[go: up one dir, main page]

login
Search: a002110 -id:a002110
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n for n <= 2. Thereafter a(n) is the least novel multiple of the greatest prior term which is coprime to a(n-1).
+10
0
1, 2, 3, 4, 6, 5, 12, 10, 9, 20, 18, 15, 8, 30, 7, 60, 14, 45, 28, 90, 21, 40, 42, 25, 84, 50, 63, 100, 126, 75, 56, 150, 35, 36, 70, 27, 200, 189, 400, 378, 125, 756, 250, 567, 800, 1134, 375, 112, 750, 49, 1600, 1701, 3200, 3402, 500, 5103, 6400, 10206, 625, 20412
OFFSET
1,2
COMMENTS
The only way a prime can enter the sequence is consequent to a primorial term, thus prime(k) follows A002110(k). However it seems that only the first 4 primorial numbers (1,2,6,30) appear in the sequence, and that consequently primes > 7 do not become terms.
Conjecture: All terms are 7-smooth numbers. Is this a permutation of A002473?
From Michael De Vlieger, Sep 11 2023: (Start)
Sequence enters a multiplicative recurrence for n > 110 such that a(73(m+1)+j)/a(73m+j) is a prime power p(k)^e(k) in S = {2, 2^6, 2^12, 3^10, 5^4, 7}.
Since a(1..110) are all 7-smooth and so is S, the sequence is in A002473 but is not a permutation, since we are missing 105, 210, and 2^k or 3^k for k > 3, and there is no way to produce these given S.
There are 4 primes, 9 squarefree composites in the sequence; together with a(1) = 1, these are 14 of the 16 divisors of 210. {2^k : k=0..3}, {3^k : k=0..3}, A000351 and A000420 are each contained in this sequence. a(73m+50) = 7^(m+2), m >= 0. Aside from these, the sequence is in A126706 (numbers neither prime powers nor squarefree). (End)
MATHEMATICA
nn = 2^12; c[_] := False; m[_] := 1;
Array[Set[{a[#], c[#]}, {#, True}] &, 2]; w = {1}; j = 2;
Do[k = SelectFirst[w, CoprimeQ[j, #] &];
While[c[k*m[k]], m[k]++]; k *= m[k];
w = Insert[w, j, LengthWhile[w, # > j &] + 1];
Set[{a[n], c[k], j}, {k, True, k}], {n, 3, nn}];
Array[a, nn] (* Michael De Vlieger, Sep 11 2023 *)
PROG
(PARI) findgcd(v, k) = v = vecsort(v, , 4); for (i=1, #v, if (gcd(v[i], k) == 1, return(v[i])); );
findmult(k, v) = v = vecsort(v); for (i=1, oo, if (!vecsearch(v, i*k), return (i*k)));
lista(nn) = my(va = vector(nn)); va[1] = 1; va[2] = 2; for (n=3, nn, my(v = Vec(va, n-1)); my(x = findgcd(v, va[n-1])); my(y = findmult(x, v)); va[n] = y; ); va; \\ Michel Marcus, Sep 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Sep 08 2023
STATUS
approved
a(n) = binomial(primorial(n), n).
+10
0
1, 2, 15, 4060, 78738660, 545754554499462, 1018081517447240182211275, 1793004475784081302284255717158418120, 1943305407393725342965469143054357602760779899437185, 3772316402417100592416011698371929155605067111502494326520988270728160
OFFSET
0,2
FORMULA
a(n) = binomial(A002110(n), n).
PROG
(Python)
from sympy import binomial, primorial
a = lambda n: binomial(primorial(n), n)
print([a(n) for n in range(1, 10)])
(PARI) a(n) = binomial(vecprod(primes(n)), n); \\ Michel Marcus, Sep 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
DarĂ­o Clavijo, Sep 13 2023
STATUS
approved
Primes of the form (k-th primorial) - (k+1)st prime.
+10
0
23, 199, 2297, 30013, 9699667, 3217644767340672907899084554047, 267064515689275851355624017992701, 23768741896345550770650537601358213, 1492182350939279320058875736615841068547583863326864530259
OFFSET
1,1
COMMENTS
Conjecture: sequence is infinite.
EXAMPLE
primorial(4) - prime(4+1) = 2*3*5*7 - prime(5) = 210 - 11 = 199, which is prime, so 199 is a term.
CROSSREFS
Cf. A002110, A093078, A249798 (corresponding k's).
The prime numbers in A060882.
A038708 with subtraction instead of addition.
KEYWORD
nonn
AUTHOR
Daniel D Gibson, Nov 08 2023
STATUS
approved
Smallest nonprime that is the n-th prime plus a multiple of the (n-1)-st primorial.
+10
0
4, 9, 35, 187, 221, 2323, 120137, 1021039, 19399403, 223092899, 6469693261, 200560490167, 7420738134851, 304250263527253, 39248283995010137, 614889782588491463, 65178316954380089519, 3845520700308425278201, 117288381359406970983337, 7858321551080267055879161
OFFSET
1,1
EXAMPLE
For n = 1, the n-th prime (2) plus a multiple m of the (n-1) primorial (1) is 2+m, giving the smallest nonprime, a(1)=4, when m=2.
For n = 4, the n-th prime (7) plus a multiple m of the (n-1) primorial (30) is 7+30m, giving the smallest nonprime, a(4)=187, when m=6.
MATHEMATICA
a[n_] := Module[{p = Prime[n], r = Product[Prime[i], {i, 1, n - 1}]}, While[p += r; PrimeQ[p]]; p]; Array[a, 20] (* Amiram Eldar, Dec 07 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Don N. Page, Dec 07 2023
STATUS
approved
Primes in A024528.
+10
0
3, 11, 61, 457, 5237, 1226677, 34543329507310391, 1636619248175258407, 5186576044693944076609, 742779051038516950393163206833793, 1506853388294906471801157206440769816406928024502711, 651879075122842895567706351814676957742356330143458665568047
OFFSET
1,1
COMMENTS
Primes which are the sum of the numerator and the denominator of partial sums of the reciprocals of primes.
Each term of this sequence can be expressed as the sum of an expression with exactly one odd term and n even terms, where the odd term is A002110(n)/A002110(1), and n > 0 (see Alexander Adamchuk comment in A024528).
a(2) = 11 = 3 + 2 + 6 contains the only prime odd term 3.
EXAMPLE
3 is a term because 1/2 = 1/2 and 1 + 2 = 3 which is prime.
11 is a term because 1/2 + 1/3 = 5/6 and 5 + 6 = 11 which is prime.
61 is a term because 5/6 + 1/5 = 31/30 and 31 + 30 = 61 which is prime.
457 is a term because 31/30 + 1/7 = 247/210 and 247 + 210 = 457 which is prime.
CROSSREFS
Intersection of A000040 and A024528.
Cf. A002110.
KEYWORD
nonn
AUTHOR
Torlach Rush, Jan 08 2024
STATUS
approved
a(n) is the least integer m such that p#*m - 1 is prime for all primes p <= prime(n).
+10
0
2, 2, 2, 2, 9, 9, 9, 224719, 384427, 16114470, 259959472, 13543584514, 100318016379, 100318016379
OFFSET
1,1
PROG
(PARI) isok(m, n) = for(i=1, n, my(P = vecprod(primes(i))); if (! isprime(P*m-1), return(0)); ); return(1);
a(n) = my(m=1); while (!isok(m, n), m++); m;
CROSSREFS
Cf. A002110.
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Mar 29 2024
STATUS
approved
a(n) is the largest k such that tau(k)^n >= k.
+10
0
2, 1260, 27935107200, 29564884570506808579056000
OFFSET
1,1
COMMENTS
Let prime(j)# denote the product of the first j primes, A002110(j); then
a(1) = prime(1)# = 2,
a(2) = 6*prime(4)# = 1260,
a(3) = 2880*prime(8)# = 2.7935...*10^10,
a(4) = 907200*prime(16)# = 2.9564...*10^25,
a(5) >= 259459200*prime(30)# = 8.2015...*10^54,
a(6) >= 3238237626624000*prime(52)# = 3.4403...*10^111,
a(7) >= 248818180782850398720000*prime(91)# = 5.4351...*10^218.
EXAMPLE
27935107200 = 2^7 * 3^3 * 5^2 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1,
so tau(27935107200) = (7+1)*(3+1)*(2+1)*(1+1)*(1+1)*(1+1)*(1+1)*(1+1) = 8*4*3*2*2*2*2*2 = 3072; 3072^3 = 28991029248 > 27935107200, and there is no larger number k such that tau(k)^3 >= k, so a(3) = 27935107200.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jon E. Schoenfield, Jul 20 2024
STATUS
approved
Square array T(n, k), n > 1 and k >= 1, read by antidiagonals in ascending order, give the smallest number that starts a sequence of exactly k consecutive numbers, each having exactly n distinct prime factors (counted without multiplicity), or -1 if no such number exists.
+10
0
6, 30, 14, 210, 230, 20, 2310, 7314, 644, 33, 30030, 254540, 37960, 1308, 54, 510510, 11243154, 1042404, 134043, 2664, 91, 9699690, 965009045, 323567034, 21871365, 357642, 6850, 142
OFFSET
2,1
COMMENTS
All positive terms are composite.
FORMULA
T(n,1) = A002110(n) for n > 1.
EXAMPLE
T(2,3) = 20 = 2^2 * 5, because both 21 and 22 have the same omega. Thus, 20 is the starting number of a run of 3 numbers that each have same omega, i.e. 2. No lesser number has this property, so T(2,3) = 20.
Table begins (upper left corner = T(2,1)):
6 14 20 33 ...
30 230 644 1308 ...
210 7314 37960 134043 ...
2310 254540 1042404 21871365 ...
30030 11243154 323567034 7933641735 ...
... ... ... ... ...
CROSSREFS
KEYWORD
sign,tabl,more
AUTHOR
Jean-Marc Rebert, Aug 10 2024
STATUS
approved

Search completed in 0.953 seconds