# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a025487 Showing 1-1 of 1 %I A025487 #168 Nov 30 2023 23:34:02 %S A025487 1,2,4,6,8,12,16,24,30,32,36,48,60,64,72,96,120,128,144,180,192,210, %T A025487 216,240,256,288,360,384,420,432,480,512,576,720,768,840,864,900,960, %U A025487 1024,1080,1152,1260,1296,1440,1536,1680,1728,1800,1920,2048,2160,2304,2310 %N A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110. %C A025487 All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted. %C A025487 A111059 is a subsequence. - _Reinhard Zumkeller_, Jul 05 2010 %C A025487 Choie et al. (2007) call these "Hardy-Ramanujan integers". - _Jean-François Alcover_, Aug 14 2014 %C A025487 The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi". %C A025487 For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - _Antti Karttunen_, Jan 18 2019 %C A025487 The prime signature corresponding to a(n) is given in row n of A124832. - _M. F. Hasler_, Jul 17 2019 %H A025487 Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes) %H A025487 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972. %H A025487 Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers". %H A025487 YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367. %H A025487 Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT] %H A025487 Michael De Vlieger, Relations of A025487 to A002110, A002182, and A002201. %H A025487 Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10. %H A025487 G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261. %H A025487 Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430. %H A025487 L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388. %F A025487 What can be said about the asymptotic behavior of this sequence? - _Franklin T. Adams-Watters_, Jan 06 2010 %F A025487 Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - _Charles R Greathouse IV_, Dec 05 2012 %F A025487 From _Antti Karttunen_, Jan 18 & Dec 24 2019: (Start) %F A025487 A085089(a(n)) = n. %F A025487 A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.] %F A025487 A001221(a(n)) = A061395(a(n)) = A061394(n). %F A025487 A007814(a(n)) = A051903(a(n)) = A051282(n). %F A025487 a(A101296(n)) = A046523(n). %F A025487 a(A306802(n)) = A002182(n). %F A025487 a(n) = A108951(A181815(n)) = A329900(A181817(n)). %F A025487 If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)). %F A025487 (End) %F A025487 Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - _Amiram Eldar_, Oct 20 2020 %e A025487 The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ... %p A025487 isA025487 := proc(n) %p A025487 local pset,omega ; %p A025487 pset := sort(convert(numtheory[factorset](n),list)) ; %p A025487 omega := nops(pset) ; %p A025487 if op(-1,pset) <> ithprime(omega) then %p A025487 return false; %p A025487 end if; %p A025487 for i from 1 to omega-1 do %p A025487 if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then %p A025487 return false; %p A025487 end if; %p A025487 end do: %p A025487 true ; %p A025487 end proc: %p A025487 A025487 := proc(n) %p A025487 option remember ; %p A025487 local a; %p A025487 if n = 1 then %p A025487 1 ; %p A025487 else %p A025487 for a from procname(n-1)+1 do %p A025487 if isA025487(a) then %p A025487 return a; %p A025487 end if; %p A025487 end do: %p A025487 end if; %p A025487 end proc: %p A025487 seq(A025487(n),n=1..100) ; # _R. J. Mathar_, May 25 2017 %t A025487 PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* _Robert G. Wilson v_, Aug 14 2004 *) %t A025487 (* Second program: generate all terms m <= A002110(n): *) %t A025487 f[n_] := {{1}}~Join~ %t A025487 Block[{lim = Product[Prime@ i, {i, n}], %t A025487 ww = NestList[Append[#, 1] &, {1}, n - 1], dec}, %t A025487 dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; %t A025487 Map[Block[{w = #, k = 1}, %t A025487 Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], %t A025487 Product[Prime@ i, {i, Length@ w}] ] &@ Reap[ %t A025487 Do[ %t A025487 If[# < lim, %t A025487 Sow[#]; k = 1, %t A025487 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w, %t A025487 If[k == 1, %t A025487 MapAt[# + 1 &, w, k], %t A025487 PadLeft[#, Length@ w, First@ #] &@ %t A025487 Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], %t A025487 {i, Infinity}] ][[-1]] %t A025487 ] &, ww]]; Sort[Join @@ f@ 13] (* _Michael De Vlieger_, May 19 2018 *) %o A025487 (PARI) isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ _Charles R Greathouse IV_, Jun 10 2011 %o A025487 (PARI) factfollow(n)={local(fm, np, n2); %o A025487 fm=factor(n); np=matsize(fm)[1]; %o A025487 if(np==0,return([2])); %o A025487 n2=n*nextprime(fm[np,1]+1); %o A025487 if(np==1||fm[np,2]t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ _M. F. Hasler_, Jul 17 2019 %o A025487 (PARI) %o A025487 \\ For fast generation of large number of terms, use this program: %o A025487 A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980 %o A025487 A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e. %o A025487 v025487 = A025487list(101); %o A025487 A025487(n) = v025487[n]; %o A025487 for(n=1,#v025487,print1(A025487(n), ", ")); \\ _Antti Karttunen_, Dec 24 2019 %o A025487 (Haskell) %o A025487 import Data.Set (singleton, fromList, deleteFindMin, union) %o A025487 a025487 n = a025487_list !! (n-1) %o A025487 a025487_list = 1 : h [b] (singleton b) bs where %o A025487 (_ : b : bs) = a002110_list %o A025487 h cs s xs'@(x:xs) %o A025487 | m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs' %o A025487 | otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs %o A025487 where (m, s') = deleteFindMin s %o A025487 -- _Reinhard Zumkeller_, Apr 06 2013 %o A025487 (Sage) %o A025487 def sharp_primorial(n): return sloane.A002110(prime_pi(n)) %o A025487 N = 2310 %o A025487 nmax = 2^floor(log(N,2)) %o A025487 sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N]) %o A025487 # _Giuseppe Coppoletta_, Jan 26 2015 %Y A025487 Subsequence of A055932, A191743, and A324583. %Y A025487 Cf. A025488, A051282, A036041, A051466, A061394, A124832, A161360, A166469, A181815, A181817, A283980, A306802, A322584, A322585 (characteristic function), A329897, A329898, A329899, A329900, A329904, A330683. %Y A025487 Cf. A085089, A101296 (left inverses). %Y A025487 Equals range of values taken by A046523. %Y A025487 Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors). %Y A025487 Subsequences of this sequence include: A000079, A000142, A000400, A001013, A001813, A002110, A002182, A005179, A006939, A025527, A056836, A061742, A064350, A066120, A087980, A097212, A097213, A111059, A119840, A119845, A126098, A129912, A140999, A166338, A166470, A166472, A166473, A166475, A167448, A168262, A168263, A168264, A179215, A181555, A181804, A181806, A181809, A181818, A181822, A181823, A181824, A181825, A181826, A181827, A182763, A182862, A182863, A212170, A220264, A220423, A250269, A250270, A260633, A266047, A284456, A300357, A304938, A329894, A330687; also A037019 and A330681 (when sorted), possibly also A289132. %Y A025487 Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887. %Y A025487 Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056. %K A025487 nonn,easy,nice,core %O A025487 1,2 %A A025487 _David W. Wilson_ %E A025487 Offset corrected by _Matthew Vandermast_, Oct 19 2008 %E A025487 Minor correction by _Charles R Greathouse IV_, Sep 03 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE