[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a001079 -id:a001079
     Sort: relevance | references | number | modified | created      Format: long | short | data
4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.
(Formerly M4135 N1714)
+10
121
0, 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600, 32500, 38025, 44226, 51156, 58870, 67425, 76880, 87296, 98736, 111265, 124950, 139860, 156066, 173641, 192660, 213200, 235340
OFFSET
0,4
COMMENTS
Also number of ways to legally insert two pairs of parentheses into a string of m := n-1 letters. (There are initially 2C(m+4,4) (A034827) ways to insert the parentheses, but we must subtract 2(m+1) for illegal clumps of 4 parentheses, 2m(m+1) for clumps of 3 parentheses, C(m+1,2) for 2 clumps of 2 parentheses and (m-1)C(m+1,2) for 1 clump of 2 parentheses, giving m(m+1)^2(m+2)/12 = n^2*(n^2-1)/12.) See also A000217.
E.g., for n=2 there are 6 ways: ((a))b, ((a)b), ((ab)), (a)(b), (a(b)), a((b)).
Let M_n denote the n X n matrix M_n(i,j)=(i+j); then the characteristic polynomial of M_n is x^(n-2) * (x^2-A002378(n)*x - a(n)). - Benoit Cloitre, Nov 09 2002
Let M_n denote the n X n matrix M_n(i,j)=(i-j); then the characteristic polynomial of M_n is x^n + a(n)x^(n-2). - Michael Somos, Nov 14 2002 [See A114327 for the infinite matrix M in triangular form. - Wolfdieter Lang, Feb 05 2018]
Number of permutations of [n] which avoid the pattern 132 and have exactly 2 descents. - Mike Zabrocki, Aug 26 2004
Number of tilings of a <2,n,2> hexagon.
a(n) is the number of squares of side length at least 1 having vertices at the points of an n X n unit grid of points (the vertices of an n-1 X n-1 chessboard). [For a proof, see Comments in A051602. - N. J. A. Sloane, Sep 29 2021] For example, on the 3 X 3 grid (the vertices of a 2 X 2 chessboard) there are four 1 X 1 squares, one (skew) sqrt(2) X sqrt(2) square, and one 3 X 3 square, so a(3)=6. On the 4 X 4 grid (the vertices of a 3 X 3 chessboard) there are 9 1 X 1 squares, 4 2 X 2 squares, 1 3 X 3 square, 4 sqrt(2) X sqrt(2) squares, and 2 sqrt(5) X sqrt(5) squares, so a(4) = 20. See also A024206, A108279. [Comment revised by N. J. A. Sloane, Feb 11 2015]
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Number of distinct components of the Riemann curvature tensor. - Gene Ward Smith, Apr 24 2006
a(n) is the number of 4 X 4 matrices (symmetrical about each diagonal) M = [a,b,c,d;b,e,f,c;c,f,e,b;d,c,b,a] with a+b+c+d=b+e+f+c=n+2; (a,b,c,d,e,f natural numbers). - Philippe Deléham, Apr 11 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is the number of Dyck (n+1)-paths with exactly n-1 peaks. - David Callan, Sep 20 2007
Starting (1,6,20,50,...) = third partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+3,i+3)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
4-dimensional square numbers. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Equals row sums of triangle A177877; a(n), n > 1 = (n-1) terms in (1,2,3,...) dot (...,3,2,1) with additive carryovers. Example: a(4) = 20 = (1,2,3) dot (3,2,1) with carryovers = (1*3) + (2*2 + 3) + (3*1 + 7) = (3 + 7 + 10).
Convolution of the triangular numbers A000217 with the odd numbers A004273.
a(n+2) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w-x=max{w,x,y,z}-min{w,x,y,z}. - Clark Kimberling, May 28 2012
The second level of finite differences is a(n+2) - 2*a(n+1) + a(n) = (n+1)^2, the squares. - J. M. Bergot, May 29 2012
Because the differences of this sequence give A000330, this is also the number of squares in an n+1 X n+1 grid whose sides are not parallel to the axes.
a(n+2) gives the number of 2*2 arrays that can be populated with 0..n such that rows and columns are nondecreasing. - Jon Perry, Mar 30 2013
For n consecutive numbers 1,2,3,...,n, the sum of all ways of adding the k-tuples of consecutive numbers for n=a(n+1). As an example, let n=4: (1)+(2)+(3)+(4)=10; (1+2)+(2+3)+(3+4)=15; (1+2+3)+(2+3+4)=15; (1+2+3+4)=10 and the sum of these is 50=a(4+1)=a(5). - J. M. Bergot, Apr 19 2013
If P(n,k) = n*(n+1)*(k*n-k+3)/6 is the n-th (k+2)-gonal pyramidal number, then a(n) = P(n,k)*P(n-1,k-1) - P(n-1,k)*P(n,k-1). - Bruno Berselli, Feb 18 2014
For n > 1, a(n) = 1/6 of the area of the trapezoid created by the points (n,n+1), (n+1,n), (1,n^2+n), (n^2+n,1). - J. M. Bergot, May 14 2014
For n > 3, a(n) is twice the area of a triangle with vertices at points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), and (C(n+2,4),C(n+3,4)). - J. M. Bergot, Jun 03 2014
a(n) is the dimension of the space of metric curvature tensors (those having the symmetries of the Riemann curvature tensor of a metric) on an n-dimensional real vector space. - Daniel J. F. Fox, Dec 15 2018
Coefficients in the terminating series identity 1 - 6*n/(n + 5) + 20*n*(n - 1)/((n + 5)*(n + 6)) - 50*n*(n - 1)*(n - 2)/((n + 5)*(n + 6)*(n + 7)) + ... = 0 for n = 1,2,3,.... Cf. A000330 and A005585. - Peter Bala, Feb 18 2019
REFERENCES
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
R. Euler and J. Sadek, "The Number of Squares on a Geoboard", Journal of Recreational Mathematics, 251-5 30(4) 1999-2000 Baywood Pub. NY
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
Duane DeTemple, Using Squares to Sum Squares, The College Mathematics Journal, ? (2010), 214-221.
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
Reinhard O. W. Franz, and Berton A. Earnshaw, A constructive enumeration of meanders, Ann. Comb. 6 (2002), no. 1, 7-17.
M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
M. Jones, S. Kitaev, and J. Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
Sandi Klavžar, Balázs Patkós, Gregor Rus, and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
Calvin Lin, Squares on a grid, April 2015
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698).
C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
P. N. Rathie, A census of simple planar triangulations, J. Combin. Theory, B 16 (1974), 134-138. See Table I.
Royce A. Speck, The Number of Squares on a Geoboard, School Science and Mathematics, Volume 79, Issue 2, pages 145-150, February 1979
Eric Weisstein's World of Mathematics, Riemann Tensor.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
G.f.: x^2*(1+x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..n} (n-i)*i^2 = a(n-1) + A000330(n-1) = A000217(n)*A000292(n-2)/n = A000217(n)*A000217(n-1)/3 = A006011(n-1)/3, convolution of the natural numbers with the squares. - Henry Bottomley, Oct 19 2000
a(n)+1 = A079034(n). - Mario Catalani (mario.catalani(AT)unito.it), Feb 12 2003
a(n) = 2*C(n+2, 4) - C(n+1, 3). - Paul Barry, Mar 04 2003
a(n) = C(n+2, 4) + C(n+1, 4). - Paul Barry, Mar 13 2003
a(n) = Sum_{k=1..n} A000330(n-1). - Benoit Cloitre, Jun 15 2003
a(n) = n*C(n+1,3)/2 = C(n+1,3)*C(n+1,2)/(n+1). - Mitch Harris, Jul 06 2006
a(n) = A006011(n)/3 = A008911(n)/2 = A047928(n-1)/12 = A083374(n)/6. - Zerinvary Lajos, May 09 2007
a(n) = (1/2)*Sum_{1 <= x_1, x_2 <= n} (det V(x_1,x_2))^2 = (1/2)*Sum_{1 <= i,j <= n} (i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n+1,3) + 2*C(n+1,4). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (1/48)*sinh(2*arccosh(n))^2. - Artur Jasinski, Feb 10 2010
a(n) = n*A000292(n-1)/2. - Tom Copeland, Sep 13 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Nov 29 2011
a(n) = (n-1)*A000217(n-1) - Sum_{i=0..n-2} (n-1-2*i)*A000217(i) for n > 1. - Bruno Berselli, Jun 22 2013
a(n) = C(n,2)*C(n+1,3) - C(n,3)*C(n+1,2). - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n} ( (2k-n)* k(k+1)/2 ). - Wesley Ivan Hurt, Sep 26 2013
a(n) = floor(n^2/3) + 3*Sum_{k=1..n} k^2*floor((n-k+1)/3). - Mircea Merca, Feb 06 2014
Euler transform of length 2 sequence [6, -1]. - Michael Somos, May 28 2014
G.f. x^2*2F1(3,4;2;x). - R. J. Mathar, Aug 09 2015
Sum_{n>=2} 1/a(n) = 21 - 2*Pi^2 = 1.260791197821282762331... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A080852(2,n-2). - R. J. Mathar, Jul 28 2016
a(n) = A046092(n) * A046092(n-1)/48 = A000217(n) * A000217(n-1)/3. - Bruce J. Nicholson, Jun 06 2017
E.g.f.: (1/12)*exp(x)*x^2*(6 + 6*x + x^2). - Stefano Spezia, Dec 07 2018
Sum_{n>=2} (-1)^n/a(n) = Pi^2 - 9 (See A002388). - Amiram Eldar, Jun 28 2020
EXAMPLE
a(7) = 6*21 - (6*0 + 4*1 + 2*3 + 0*6 - 2*10 - 4*15) = 196. - Bruno Berselli, Jun 22 2013
G.f. = x^2 + 6*x^3 + 20*x^4 + 50*x^5 + 105*x^6 + 196*x^7 + 336*x^8 + ...
MAPLE
A002415 := proc(n) binomial(n^2, 2)/6 ; end proc: # Zerinvary Lajos, Jan 07 2008
MATHEMATICA
Table[(n^4 - n^2)/12, {n, 0, 40}] (* Zerinvary Lajos, Mar 21 2007 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 1, 6, 20}, 40] (* Harvey P. Dale, Nov 29 2011 *)
PROG
(PARI) a(n) = n^2 * (n^2 - 1) / 12;
(PARI) x='x+O('x^200); concat([0, 0], Vec(x^2*(1+x)/(1-x)^5)) \\ Altug Alkan, Mar 23 2016
(Magma) [n^2*(n^2-1)/12: n in [0..50]]; // Wesley Ivan Hurt, May 14 2014
(GAP) List([0..45], n->Binomial(n^2, 2)/6); # Muniru A Asiru, Dec 15 2018
CROSSREFS
a(n) = ((-1)^n)*A053120(2*n, 4)/8 (one-eighth of fifth unsigned column of Chebyshev T-triangle, zeros omitted). Cf. A001296.
Second row of array A103905.
Third column of Narayana numbers A001263.
Partial sums of A000330.
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers (A000027) with the k-gonal numbers.
KEYWORD
nonn,easy,nice
EXTENSIONS
Typo in link fixed by Matthew Vandermast, Nov 22 2010
Redundant comment deleted and more detail on relationship with A000330 added by Joshua Zucker, Jan 01 2013
STATUS
approved
a(n) = 2*n^2 + 1.
+10
95
1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579, 649, 723, 801, 883, 969, 1059, 1153, 1251, 1353, 1459, 1569, 1683, 1801, 1923, 2049, 2179, 2313, 2451, 2593, 2739, 2889, 3043, 3201, 3363, 3529, 3699, 3873, 4051
OFFSET
0,2
COMMENTS
Maximal number of regions in the plane that can be formed with n hyperbolas.
Also the number of different 2 X 2 determinants with integer entries from 0 to n.
Number of lattice points in an n-dimensional ball of radius sqrt(2). - David W. Wilson, May 03 2001
Equals A112295(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Oct 07 2007
Binomial transform of A166926. - Gary W. Adamson, May 03 2008
a(n) = longest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (2n^2 + 1, 2n^2 + 2, 4n^2 + 1).
{a(k): 0 <= k < 3} = divisors of 9. - Reinhard Zumkeller, Jun 17 2009
Number of ways to partition a 3*n X 2 grid into 3 connected equal-area regions. - R. H. Hardin, Oct 31 2009
Let A be the Hessenberg matrix of order n defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 3, a(n - 1) = coeff(charpoly(A, x), x^(n - 2)). - Milan Janjic, Jan 26 2010
Except for the first term of [A002522] and [A058331] if X = [A058331], Y = [A087113], A = [A002522], we have, for all other terms, Pell's equation: [A058331]^2 - [A002522]*[A087113]^2 = 1; (X^2 - A*Y^2 = 1); e.g., 3^2 -2*2^2 = 1; 9^2 - 5*4^2 = 1; 129^2 - 65*16^2 = 1, and so on. - Vincenzo Librandi, Aug 07 2010
Niven (1961) gives this formula as an example of a formula that does not contain all odd integers, in contrast to 2n + 1 and 2n - 1. - Alonso del Arte, Dec 05 2012
Numbers m such that 2*m-2 is a square. - Vincenzo Librandi, Apr 10 2015
Number of n-tuples from the set {1,0,-1} where at most two elements are nonzero. - Michael Somos, Oct 19 2022
REFERENCES
Ivan Niven, Numbers: Rational and Irrational, New York: Random House for Yale University (1961): 17.
LINKS
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Reinhard Zumkeller, Enumerations of Divisors.
FORMULA
G.f.: (1 + 3x^2)/(1 - x)^3. - Paul Barry, Apr 06 2003
a(n) = M^n * [1 1 1], leftmost term, where M = the 3 X 3 matrix [1 1 1 / 0 1 4 / 0 0 1]. a(0) = 1, a(1) = 3; a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). E.g., a(4) = 33 since M^4 *[1 1 1] = [33 17 1]. - Gary W. Adamson, Nov 11 2004
a(n) = cosh(2*arccosh(n)). - Artur Jasinski, Feb 10 2010
a(n) = 4*n + a(n-1) - 2 for n > 0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(n) = (((n-1)^2 + n^2))/2 + (n^2 + (n+1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = A251599(3*n) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = sqrt(8*(A000217(n-1)^2 + A000217(n)^2) + 1). - J. M. Bergot, Sep 03 2015
E.g.f.: (2*x^2 + 2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A002378(n) + A002061(n). - Bruce J. Nicholson, Aug 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(2))*coth(Pi/sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(2))*csch(Pi/sqrt(2)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(2))*sinh(Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(2))*csch(Pi/sqrt(2)). (End)
From Leo Tavares, May 23 2022: (Start)
a(n) = A000384(n+1) - 3*n.
a(n) = 3*A000217(n) + A000217(n-2). (End)
a(n) = a(-n) for all n in Z and A037235(n) = Sum_{k=0..n-1} a(k). - Michael Somos, Oct 19 2022
EXAMPLE
a(1) = 3 since (0 0 / 0 0), (1 0 / 0 1) and (0 1 / 1 0) have different determinants.
G.f. = 1 + 3*x + 9*x^2 + 19*x^3 + 33*x^4 + 51*x^5 + 73*x^6 + ... - Michael Somos, Oct 19 2022
MATHEMATICA
b[g_] := Length[Union[Map[Det, Flatten[ Table[{{i, j}, {k, l}}, {i, 0, g}, {j, 0, g}, {k, 0, g}, {l, 0, g}], 3]]]] Table[b[g], {g, 0, 20}]
2*Range[0, 49]^2 + 1 (* Alonso del Arte, Dec 05 2012 *)
PROG
(PARI) a(n)=2*n^2+1 \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a058331 = (+ 1) . a001105 -- Reinhard Zumkeller, Dec 13 2014
(Magma) [2*n^2 + 1 : n in [0..100]]; // Wesley Ivan Hurt, Feb 02 2017
CROSSREFS
Cf. A000124.
Second row of array A099597.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A112295.
Column 2 of array A188645.
Cf. A001105 and A247375. - Bruno Berselli, Sep 16 2014
KEYWORD
nonn,easy
AUTHOR
Erich Friedman, Dec 12 2000
EXTENSIONS
Revised description from Noam Katz (noamkj(AT)hotmail.com), Jan 28 2001
STATUS
approved
a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.
+10
61
0, 1, 10, 99, 980, 9701, 96030, 950599, 9409960, 93149001, 922080050, 9127651499, 90354434940, 894416697901, 8853812544070, 87643708742799, 867583274883920, 8588189040096401, 85014307126080090, 841554882220704499, 8330534515080964900, 82463790268588944501, 816307368170808480110
OFFSET
0,3
COMMENTS
Indices of square numbers which are also generalized pentagonal numbers.
If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008
The n-th term is a(n) = ((5+sqrt(24))^n - (5-sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, May 31 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) (A001079) are the nonnegative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - Wolfdieter Lang, Jun 26 2013
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,9}. - Milan Janjic, Jan 25 2015
For n > 1, this also gives the number of (n-1)-decimal-digit numbers which avoid a particular two-digit number with distinct digits. For example, there are a(5) = 9701 4-digit numbers which do not include "39" as a substring; see Wikipedia link. - Charles R Greathouse IV, Jan 14 2016
All possible solutions for y in Pell equation x^2 - 24*y^2 = 1. The values for x are given in A001079. - Herbert Kociemba, Jun 05 2022
Dickson on page 384 gives the Diophantine equation "(20) 24x^2 + 1 = y^2" and later states "... three consecutive sets (x_i, y_i) of solutions of (20) or 2x^2 + 1 = 3y^2 satisfy x_{n+1} = 10x_n - x_{n-1}, y_{n+1} = 10y_n - y_{n-1} with (x_1, y_1) = (0, 1) or (1, 1), (x_2, y_2) = (1, 5) or (11, 9), respectively." The first set of values (x_n, y_n) = (A001079(n-1), a(n-1)). - Michael Somos, Jun 19 2023
REFERENCES
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.
LINKS
K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 12.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
D. Fortin, B-spline Toeplitz inverse under corner perturbations, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From N. J. A. Sloane, Oct 22 2012
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=10, q=-1.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=12.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
Wikipedia, Curse of 39
Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv:1507.04917 [math.NT], 2015.
FORMULA
a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
A001079(n) = sqrt(24*(a(n)^2)+1), that is a(n) = sqrt((A001079(n)^2-1)/24).
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ( (5+2*sqrt(6))^n - (5-2*sqrt(6))^n )/(4*sqrt(6)).
G.f.: x/(1-10*x+x^2). (End)
a(-n) = -a(n). - Michael Somos, Sep 05 2006
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 10*a(n-1) - a(n-2). (End)
a(n+1) = Sum_{k=0..n} A101950(n,k)*9^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)).
Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). (End)
a(n) = (A054320(n-1) + A072256(n))/2. - Richard R. Forberg, Nov 21 2013
a(2*n - 1) = A046173(n).
E.g.f.: exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*8^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*12^k. - Peter Bala, Jul 18 2023
EXAMPLE
a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - Michael Somos, Sep 05 2006
G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ...
MAPLE
A004189 := proc(n)
option remember;
if n <= 1 then
n ;
else
10*procname(n-1)-procname(n-2) ;
end if;
end proc:
seq(A004189(n), n=0..20) ; # R. J. Mathar, Apr 30 2017
seq( simplify(ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Dec 23 2019
MATHEMATICA
Table[GegenbauerC[n-1, 1, 5], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008; modified by G. C. Greubel, Jun 06 2019 *)
LinearRecurrence[{10, -1}, {0, 1}, 20] (* Jean-François Alcover, Nov 15 2017 *)
ChebyshevU[Range[21] -2, 5] (* G. C. Greubel, Dec 23 2019 *)
PROG
(PARI) {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* Michael Somos, Sep 05 2006 */
(PARI) a(n)=([9, 1; 8, 1]^(n-1)*[1; 1])[1, 1] \\ Charles R Greathouse IV, Jan 14 2016
(PARI) vector(21, n, n--; polchebyshev(n-1, 2, 5) ) \\ G. C. Greubel, Dec 23 2019
(Sage) [lucas_number1(n, 10, 1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
(Sage) [chebyshev_U(n-1, 5) for n in (0..20)] # G. C. Greubel, Dec 23 2019
(Magma) [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 19 2011
(GAP) m:=5;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
CROSSREFS
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), this sequence (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
KEYWORD
easy,nonn
STATUS
approved
Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).
+10
32
1, 11, 109, 1079, 10681, 105731, 1046629, 10360559, 102558961, 1015229051, 10049731549, 99482086439, 984771132841, 9748229241971, 96497521286869, 955226983626719, 9455772314980321, 93602496166176491, 926569189346784589, 9172089397301669399, 90794324783669909401
OFFSET
0,2
COMMENTS
Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).
a(n)^2 is a star number (A003154).
Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - Lekraj Beedassy, Jul 08 2002
{a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - Richard R. Forberg, Nov 21 2013
The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015
LINKS
K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3 (2) (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
Eric Weisstein's World of Mathematics, Star Number
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
(a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.
a(n) = 10*a(n-1) - a(n-2).
a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).
a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.
6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - Reinhard Zumkeller, Jun 01 2005
From Reinhard Zumkeller, Mar 12 2008: (Start)
(sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);
a(n) = A138288(n) + A001078(n).
a(n) = A001079(n) + 3*A001078(n). (End)
a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - M. F. Hasler, Feb 14 2009
a(n) = sqrt(A006061(n)). - Zak Seidov, Oct 22 2012
a(n) = sqrt((3*A072256(n)^2 - 1)/2). - T. D. Noe, Oct 23 2012
(sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - Bruno Berselli, Oct 29 2019
a(n) = A004189(n)+A004189(n+1). - R. J. Mathar, Oct 01 2021
E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - Stefano Spezia, May 16 2023
EXAMPLE
a(1)^2 = 121 is the 5th star number (A003154).
MATHEMATICA
CoefficientList[Series[(1+x)/(1-10x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 22 2015 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Numerator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A142238 *)
a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
PROG
(PARI) a(n)=subst(poltchebi(n+1)-poltchebi(n), x, 5)/4;
(Magma) I:=[1, 11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
(GAP) a:=[1, 11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
CROSSREFS
A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, May 04 2004
Cf. A138281. Cf. A100047.
Cf. A142238.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
STATUS
approved
X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.
+10
28
0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
OFFSET
0,2
COMMENTS
Equivalently, numbers k such that both k/2 and k+1 are squares. - Karl-Heinz Hofmann, Sep 20 2022
Equivalently, numbers k such that the k-dimensional volume and total (k-1)-dimensional volume are equal, with side length being a positive integer, for all regular polyhedra constructible in k dimensions. - Matt Moir, Jul 09 2024
FORMULA
a(0)=0, a(1)=8 and a(n) = 34*a(n-1) - a(n-2) + 16.
a(n) = (A056771(n) - 1)/2. - Max Alekseyev, Nov 13 2009
a(n) = sinh(2*n*arccosh(sqrt(2))^2) (n=0,1,2,3,...). - Artur Jasinski, Feb 10 2010
G.f.: -8*x*(x+1)/((x-1)*(x^2-34*x+1)). - Colin Barker, Oct 24 2012
a(n) = A055792(n+1)-1 = A001541(n)^2 - 1. - Antti Karttunen, Oct 03 2016
MATHEMATICA
Table[Round[N[Sinh[2 n ArcCosh[Sqrt[2]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
LinearRecurrence[{35, -35, 1}, {0, 8, 288}, 30] (* Vincenzo Librandi, Dec 24 2018 *)
PROG
(Magma) I:=[0, 8, 288]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+ Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
(Python)
A132592 = [0, 8]
for n in range(2, 18): A132592.append(34 * A132592[-1] - A132592[-2] + 16)
print(A132592) # Karl-Heinz Hofmann, Sep 20 2022
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Nov 14 2007
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved
Triangle of coefficients of Chebyshev polynomials T_n(x).
+10
26
1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
OFFSET
0,4
COMMENTS
The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Renato Ferreira Pinto Jr. and Nathaniel Harms, Testing Support Size More Efficiently Than Learning Histograms, arXiv:2410.18915 [cs.DS], 2024. See p. 40.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
I. Rivin, Growth in free groups (and other stories), arXiv:math/9911076 [math.CO], 1999.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
FORMULA
a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)
EXAMPLE
Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1
2: -1 2
3: -3 4
4: 1 -8 8
5: 5 -20 16
6: -1 18 -48 32
7: -7 56 -112 64
8: 1 -32 160 -256 128
9: 9 -120 432 -576 256
10: -1 50 -400 1120 -1280 512
11: -11 220 -1232 2816 -2816 1024
12: 1 -72 840 -3584 6912 -6144 2048
13: 13 -364 2912 -9984 16640 -13312 4096
14: -1 98 -1568 9408 -26880 39424 -28672 8192
15: -15 560 -6048 28800 -70400 92160 -61440 16384
...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
MAPLE
A008310 := proc(n, m) local x ; coeftayl(simplify(ChebyshevT(n, x), 'ChebyshevT'), x=0, m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ", i, A008310(n, m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
# second Maple program:
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)
CROSSREFS
A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.
KEYWORD
sign,tabf,nice,easy
EXTENSIONS
Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014
STATUS
approved
a(n) = cos(2*n*arcsin(sqrt(3))) = (-1)^n*cosh(2*n*arcsinh(sqrt(2))).
+10
25
1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085, 416483346590304049
OFFSET
0,2
COMMENTS
Apart from sign, same as A001079 (see first formula).
FORMULA
a(n) = (-1)^n * A001079(n).
From Colin Barker, Oct 26 2014: (Start)
a(n) = ((-5-2*sqrt(6))^n + (-5+2*sqrt(6))^n)/2.
a(n) = -10*a(n-1)-a(n-2).
G.f.: (5*x+1) / (x^2+10*x+1).
(End)
MATHEMATICA
Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}]
CoefficientList[Series[(5*x + 1)/(x^2 + 10*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Jul 02 2017 *)
PROG
(PARI) Vec((5*x+1)/(x^2+10*x+1) + O(x^100)) \\ Colin Barker, Oct 26 2014
CROSSREFS
Cf. A001079.
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Oct 29 2008
EXTENSIONS
a(18) from Colin Barker, Oct 26 2014
STATUS
approved
a(n) = sinh(2*arccosh(n))^2 = 4*n^2*(n^2 - 1).
+10
21
0, 0, 48, 288, 960, 2400, 5040, 9408, 16128, 25920, 39600, 58080, 82368, 113568, 152880, 201600, 261120, 332928, 418608, 519840, 638400, 776160, 935088, 1117248, 1324800, 1560000, 1825200, 2122848, 2455488, 2825760, 3236400, 3690240
OFFSET
0,3
FORMULA
a(n) = 48*A002415(n) = 4*A047928(n).
G.f.: 48*x^2*(1+x)/(1-x)^5. - Colin Barker, Mar 22 2012
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = (21 - 2*Pi^2)/48.
Sum_{n>=2} (-1)^n/a(n) = (Pi^2 - 9)/48. (End)
MATHEMATICA
Table[4 n^2*(n^2 - 1), {n, 0, 30}] (* or *) Table[Round[N[Sinh[2 ArcCosh[n]]^2, 100]], {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 48, 288, 960}, 40] (* Harvey P. Dale, Jul 22 2015 *)
PROG
(Magma) [4*n^2*(n^2-1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
(PARI) a(n)=4*n^2*(n^2-1) \\ Charles R Greathouse IV, Jul 01 2013
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 10 2010
STATUS
approved
a(n) = -(sin(2*n*arccos(sqrt(3))))^2.
+10
20
0, 24, 2400, 235224, 23049600, 2258625624, 221322261600, 21687323011224, 2125136332838400, 208241673295152024, 20405558846592060000, 1999536525292726728024, 195934173919840627286400
OFFSET
0,2
FORMULA
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3), n > 2.
Binet formula: a(n) = -1/2 + (1/4)(49 + 20*sqrt(6))^n + (1/4)(49 - 20*sqrt(6))^n.
a(n) = 24*A108741(n).
From R. J. Mathar, Aug 23 2012: (Start)
G.f.: -24*x*(1+x) / ( (x-1)*(x^2-98*x+1) ).
a(n) = A132596(2n). (End)
MATHEMATICA
Table[ -Round[N[Sin[2 n ArcCos[Sqrt[3]]]^2, 100]], {n, 0, 20}]
OR
Table[Round[N[ -1/2 + (1/4) (49 + 20 Sqrt[6])^n + (1/4) (49 - 20 Sqrt[6])^n]], {n, 0, 6}]
OR
Clear[a]; a[n_] := a[n] = 99 a[n - 1] - 99 a[n - 2] + a[n - 3]; a[0] = 0; a[1] = 24; a[2] = 2400; Table[a[n], {n, 0, 10}]
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -99, 99]^n*[0; 24; 2400])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 10 2010
STATUS
approved
a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).
+10
19
0, 8, 80, 360, 1088, 2600, 5328, 9800, 16640, 26568, 40400, 59048, 83520, 114920, 154448, 203400, 263168, 335240, 421200, 522728, 641600, 779688, 938960, 1121480, 1329408, 1565000, 1830608, 2128680, 2461760, 2832488, 3243600
OFFSET
0,2
FORMULA
a(n) = 4*A071253(n) = 8*A037270(n).
G.f.: 8*x*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^5. - Colin Barker, Jan 08 2012
E.g.f.: 4*x*(2 + 8*x + 6*x^2 + x^3)*exp(x). - Michael Somos, Jul 05 2018
a(n) = a(-n) = (2*n)^2 + (2*n^2)^2 = (2*n^2 + 1)^2 - 1. - Michael Somos, Jul 05 2018
From Amiram Eldar, Oct 25 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/24 + (1-Pi*coth(Pi))/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 + (Pi*cosech(Pi)-1)/8. (End)
EXAMPLE
G.f. = 8*x + 80*x^2 + 360*x^3 + 1088*x^4 + 2600*x^5 + 5328*x^6 + 9800*x^7 + ... - Michael Somos, Jul 05 2018
MATHEMATICA
Table[4*n^2*(n^2 + 1), {n, 0, 30}] (* OR *)
Table[Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}]
a[ n_] := TrigExpand @ Sinh[ 2 ArcSinh @ n]^2; (* Michael Somos, Jul 05 2018 *)
PROG
(Magma) [4*n^2*(n^2+1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
(PARI) a(n)=4*n^2*(n^2+1) \\ Charles R Greathouse IV, Apr 17 2012
(PARI) a(n)=8*binomial(n^2+1, 2) \\ Charles R Greathouse IV, Apr 17 2012
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 10 2010
EXTENSIONS
Name corrected by Jianing Song, Nov 23 2018
STATUS
approved

Search completed in 0.118 seconds