[go: up one dir, main page]

login
A097316
Chebyshev U(n,x) polynomial evaluated at x=33.
22
1, 66, 4355, 287364, 18961669, 1251182790, 82559102471, 5447649580296, 359462313197065, 23719065021425994, 1565098829100918539, 103272803655639197580, 6814439942443086121741, 449649763397588044837326
OFFSET
0,2
COMMENTS
Used to form integer solutions of Pell equation a^2 - 17*b^2 =-1. See A078989 with A078988.
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 66*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 66) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-66*x+x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*66^(n-2*k).
a(n) = ((33+8*sqrt(17))^(n+1) - (33-8*sqrt(17))^(n+1))/(16*sqrt(17)).
MAPLE
seq( simplify(ChebyshevU(n, 33)), n=0..20); # G. C. Greubel, Dec 22 2019
MATHEMATICA
LinearRecurrence[{66, -1}, {1, 66}, 14] (* Ray Chandler, Aug 11 2015 *)
ChebyshevU[Range[21] -1, 33] (* G. C. Greubel, Dec 22 2019 *)
PROG
(PARI) vector( 21, n, polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 22 2019
(Magma) m:=33; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
(Sage) [chebyshev_U(n, 33) for n in (0..20)] # G. C. Greubel, Dec 22 2019
(GAP) m:=33;; a:=[1, 2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
CROSSREFS
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), this sequence (m=33).
Sequence in context: A004998 A239409 A295592 * A239337 A099639 A003555
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved