[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134290
Ninth column (and diagonal) of Narayana triangle A001263.
7
1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, 1482270815025, 2791289197125, 5130235085625, 9219552907500
OFFSET
0,2
COMMENTS
See a comment under A134288 on the coincidence of column and diagonal sequences.
Kekulé numbers K(O(1,8,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
LINKS
W. F. Wheatley and James Ethridge (Proposers), Comment from Alan H. Rapoport, Problem 84, Missouri Journal of Mathematical Sciences, volume 8, #2, spring 1996, pages 97-102.
FORMULA
a(n) = A001263(n+9,9) = binomial(n+9,9)*binomial(n+9,8)/(n+9).
O.g.f.: P(8,x)/(1-x)^17 with the numerator polynomial P(8,x) = Sum_{k=1..8} A001263(8,k)*x^(k-1), the eighth row polynomial of the Narayana triangle: P(8,x) = 1 + 28*x + 196*x^2 + 490*x^3 + 490*x^4 + 196*x^5 + 28*x^6 + x^7.
a(n) = Product_{i=1..8} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 497925669/175 - 288288*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 580367/35 - 1680*Pi^2. (End)
MAPLE
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8))^2*(n+9))/14631321600:
seq(a(n), n=0..23); # Peter Luschny, Sep 01 2016
MATHEMATICA
Table[Binomial[n+9, 9]*Binomial[n+8, 7]/8, {n, 0, 25}] (* G. C. Greubel, Aug 28 2019 *)
PROG
(PARI) Vec((1+28*x+196*x^2+490*x^3+490*x^4+196*x^5+28*x^6+x^7)/(1-x)^17 + O(x^25)) \\ Altug Alkan, Sep 01 2016
(PARI) vector(25, n, binomial(n+8, 9)*binomial(n+7, 7)/8) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+9, 9)*Binomial(n+8, 7)/8: n in [0..25]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+9, 9)*binomial(n+8, 7)/8 for n in (0..25)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..25], n-> Binomial(n+9, 9)*Binomial(n+8, 7)/8); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. A002378.
Cf. A134289 (eighth column of Narayana triangle).
Cf. A134291 (tenth column of Narayana triangle).
Sequence in context: A293971 A341427 A024379 * A359933 A341573 A078761
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved