[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of Chebyshev polynomials T_n(x).
26

%I #130 Oct 27 2024 11:46:52

%S 1,1,-1,2,-3,4,1,-8,8,5,-20,16,-1,18,-48,32,-7,56,-112,64,1,-32,160,

%T -256,128,9,-120,432,-576,256,-1,50,-400,1120,-1280,512,-11,220,-1232,

%U 2816,-2816,1024,1,-72,840,-3584,6912,-6144,2048,13,-364,2912,-9984,16640,-13312,4096

%N Triangle of coefficients of Chebyshev polynomials T_n(x).

%C The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - _Wolfdieter Lang_, Aug 02 2014

%C Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - _Clark Kimberling_, Aug 04 2024

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

%D E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.

%D Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

%H R. J. Mathar, <a href="/A008310/b008310.txt">Table of n, a(n) for n = 0..2600</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Renato Ferreira Pinto Jr. and Nathaniel Harms, <a href="https://arxiv.org/abs/2410.18915">Testing Support Size More Efficiently Than Learning Histograms</a>, arXiv:2410.18915 [cs.DS], 2024. See p. 40.

%H D. Foata and G.-N. Han, <a href="https://irma.math.unistra.fr/~foata/paper/pub71.html">Nombres de Fibonacci et polynomes orthogonaux</a>

%H C. Lanczos, <a href="/A002457/a002457.pdf">Applied Analysis</a> (Annotated scans of selected pages)

%H I. Rivin, <a href="https://arxiv.org/abs/math/9911076">Growth in free groups (and other stories)</a>, arXiv:math/9911076 [math.CO], 1999.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html">Chebyshev Polynomial of the First Kind</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%F a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - _R. J. Mathar_, Apr 20 2007

%F From _Paul Weisenhorn_, Oct 02 2019: (Start)

%F T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.

%F T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)

%F From _Peter Bala_, Aug 15 2022: (Start)

%F T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.

%F Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).

%F exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

%e Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.

%e From _Wolfdieter Lang_, Aug 02 2014: (Start)

%e This irregular triangle a(n,k) begins:

%e n\k 0 1 2 3 4 5 6 7 ...

%e 0: 1

%e 1: 1

%e 2: -1 2

%e 3: -3 4

%e 4: 1 -8 8

%e 5: 5 -20 16

%e 6: -1 18 -48 32

%e 7: -7 56 -112 64

%e 8: 1 -32 160 -256 128

%e 9: 9 -120 432 -576 256

%e 10: -1 50 -400 1120 -1280 512

%e 11: -11 220 -1232 2816 -2816 1024

%e 12: 1 -72 840 -3584 6912 -6144 2048

%e 13: 13 -364 2912 -9984 16640 -13312 4096

%e 14: -1 98 -1568 9408 -26880 39424 -28672 8192

%e 15: -15 560 -6048 28800 -70400 92160 -61440 16384

%e ...

%e T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.

%e (End)

%p A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # _R. J. Mathar_, Apr 20 2007

%p # second Maple program:

%p b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:

%p T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):

%p seq(T(n), n=0..15); # _Alois P. Heinz_, Sep 04 2019

%t Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* _Eugeniy Sokol_, Sep 04 2019 *)

%Y A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.

%Y Reflection of A028297. Cf. A008312, A053112.

%Y Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.

%Y Cf. A053120.

%K sign,tabf,nice,easy

%O 0,4

%A _N. J. A. Sloane_

%E Additional comments and more terms from _Henry Bottomley_, Dec 13 2000

%E Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - _Wolfdieter Lang_, Aug 06 2014