[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001079
a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5.
(Formerly M4005 N1659)
49
1, 5, 49, 485, 4801, 47525, 470449, 4656965, 46099201, 456335045, 4517251249, 44716177445, 442644523201, 4381729054565, 43374646022449, 429364731169925, 4250272665676801, 42073361925598085, 416483346590304049
OFFSET
0,2
COMMENTS
Also gives solutions to the equation x^2-1=floor(x*r*floor(x/r)) where r=sqrt(6). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions >1 to the equation x^2=ceiling(x*r*floor(x/r)) where r=sqrt(6). - Benoit Cloitre, Feb 24 2004
a(n) and b(n) (A004189) are the nonnegative proper solutions to the Pell equation a(n)^2 - 6*(2*b(n))^2 = +1, n >= 0. The formula given below by Gregory V. Richardson follows. - Wolfdieter Lang, Jun 26 2013
a(n) are the integer square roots of (A032528 + 1). They are also the values of m where (A032528(m) - 1) has integer square roots. See A122653 for the integer square roots of (A032528 - 1), and see A122652 for the values of m where (A032528(m) + 1) has integer square roots. - Richard R. Forberg, Aug 05 2013
a(n) are also the values of m where floor(2m^2/3) has integer square roots, excluding m = 0. The corresponding integer square roots are given by A122652(n). - Richard R. Forberg, Nov 21 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 24 = 0. - Colin Barker, Feb 09 2014
Dickson on page 384 gives the Diophantine equation "24x^2 + 1 = y^2" and later states "y_{n+1} = 10y_n - y_{n-1}" where y_n is this sequence. - Michael Somos, Jun 19 2023
REFERENCES
Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.
L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 374.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Tanya Khovanova, Recursive Sequences
Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
For all members x of the sequence, 6*x^2 -6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 5) = (S(n, 10)-S(n-2, 10))/2 with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 10) = A004189(n+1).
a(n) = sqrt(1+24*A004189(n)^2) (cf. Richardson comment).
a(n)*a(n+3) - a(n+1)*a(n+2) = 240. - Ralf Stephan, Jun 06 2005
Chebyshev's polynomials T(n,x) evaluated at x=5.
G.f.: (1-5*x)/(1-10*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n)= ((5+2*sqrt(6))^n + (5-2*sqrt(6))^n)/2.
a(-n) = a(n).
a(n+1) = 5*a(n) + 2*(6*a(n)^2-6)^(1/2) - Richard Choulet, Sep 19 2007
(sqrt(2)+sqrt(3))^(2*n)=a(n)+A001078(n)*sqrt(6). - Reinhard Zumkeller, Mar 12 2008
a(n+1) = 2*A054320(n) + 3*A138288(n). - Reinhard Zumkeller, Mar 12 2008
a(n) = cosh(2*n* arcsinh(sqrt(2))). - Herbert Kociemba, Apr 24 2008
a(n) = (-1)^n * cos(2*n* arcsin(sqrt(3))). - Artur Jasinski, Oct 29 2008
a(n) = cos(2*n* arccos(sqrt(3))). - Artur Jasinski, Sep 10 2016
a(n) = A142238(2n-1) = A041006(2n-1) = A041038(2n-1), for all n > 0. - M. F. Hasler, Feb 14 2009
2*a(n)^2 = 3*A122652(n)^2 + 2. - Charlie Marion, Feb 01 2013
E.g.f.: cosh(2*sqrt(6)*x)*exp(5*x). - Ilya Gutkovskiy, Sep 10 2016
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 10*x + sqrt(1 + 96*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 20*x + 4*x^2) is the g.f. of A098270.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - 3/a(n)) = 1/4.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 2/a(n)) = 1/6.
Sum_{n >= 1} 1/(a(n)^2 - 3) = 1/4 - 1/sqrt(24). (End)
a(n) = 3^n*Sum_{k=0..n} (2/3)^k*binomial(2*n, 2*k). - Detlef Meya, May 21 2024
EXAMPLE
Pell equation: n = 0: 1^2 - 24*0^2 = +1, n = 1: 5^2 - 6*(1*2)^2 = 1, n = 2: 49^2 - 6*(2*10)^2 = +1. - Wolfdieter Lang, Jun 26 2013
G.f. = 1 + 5*x + 49*x^2 + 485*x^3 + 4801*x^4 + 47525*x^5 + 470449*x^6 + ...
MAPLE
A001079 := proc(n)
option remember;
if n <= 1 then
op(n+1, [1, 5]) ;
else
10*procname(n-1)-procname(n-2) ;
end if;
end proc:
seq(A001079(n), n=0..20) ; # R. J. Mathar, Apr 30 2017
MATHEMATICA
Table[(-1)^n Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 20}] (* Artur Jasinski, Oct 29 2008 *)
a[ n_] := ChebyshevT[n, 5]; (* Michael Somos, Aug 24 2014 *)
CoefficientList[Series[(1-5*x)/(1-10*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
a[n_] := 3^n*Sum[(2/3)^k*Binomial[2*n, 2*k], {k, 0, n}]; Flatten[Table[a[n], {n, 0, 18}]] (* Detlef Meya, May 21 2024 *)
PROG
(PARI) {a(n) = subst(poltchebi(n), 'x, 5)}; /* Michael Somos, Sep 05 2006 */
(PARI) {a(n) = real((5 + 2*quadgen(24))^n)}; /* Michael Somos, Sep 05 2006 */
(PARI) {a(n) = n = abs(n); polsym(1 - 10*x + x^2, n)[n+1] / 2}; /* Michael Somos, Sep 05 2006 */
(Magma) I:=[1, 5]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 10 2016
(PARI) x='x+O('x^30); Vec((1-5*x)/(1-10*x+x^2)) \\ G. C. Greubel, Dec 20 2017
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
STATUS
approved