[go: up one dir, main page]

login
A075843
Numbers k such that 99*k^2 + 1 is a square.
26
0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840
OFFSET
0,3
COMMENTS
From Wolfdieter Lang, Nov 08 2002: (Start)
Chebyshev's polynomials U(n,x) evaluated at x=10.
The a(n) give all (unsigned, integer) solutions of Pell equation b(n)^2 - 99*a(n)^2 = +1 with b(n)= A001085(n). (End)
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 20's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imagianry unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,19}. - Milan Janjic, Jan 25 2015
REFERENCES
A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
LINKS
Tanya Khovanova, Recursive Sequences
J. J. O'Connor and E. F. Robertson, Pell's Equation
Eric Weisstein's World of Mathematics, Pell Equation.
FORMULA
a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / (6*sqrt(11)).
a(n) = 20*a(n-1) - a(n-2), n>=1, a(0)=0, a(1)=1.
a(n) = S(n-1, 20), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
G.f.: x/(1 - 20*x + x^2).
a(n) = sqrt((A001085(n)^2 - 1)/99).
Lim_{n->inf.} a(n)/a(n-1) = 10 + 3*sqrt(11).
a(n+1) = Sum_{k=0..n} A101950(n,k)*19^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = 1/3*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = 3/20*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
MAPLE
seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
MATHEMATICA
Table[GegenbauerC[n-1, 1, 10], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x/(1-20x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
LinearRecurrence[{20, -1}, {0, 1}, 20] (* Harvey P. Dale, Dec 03 2023 *)
PROG
(Sage) [lucas_number1(n, 20, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 25 2008
(Sage) [chebyshev_U(n-1, 10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
(Magma) I:=[0, 1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
(GAP) m:=10;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
CROSSREFS
Cf. A001084.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), this sequence (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
Sequence in context: A358853 A158534 A171325 * A208072 A208122 A207372
KEYWORD
nonn,easy
AUTHOR
STATUS
approved