[go: up one dir, main page]

login
A002878
Bisection of Lucas sequence: a(n) = L(2*n+1).
(Formerly M3420 N1384)
118
1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596, 2139295485799
OFFSET
0,2
COMMENTS
In any generalized Fibonacci sequence {f(i)}, Sum_{i=0..4n+1} f(i) = a(n)*f(2n+2). - Lekraj Beedassy, Dec 31 2002
The continued fraction expansion for F((2n+1)*(k+1))/F((2n+1)*k), k>=1 is [a(n),a(n),...,a(n)] where there are exactly k elements (F(n) denotes the n-th Fibonacci number). E.g., continued fraction for F(12)/F(9) is [4, 4,4]. - Benoit Cloitre, Apr 10 2003
See A135064 for a possible connection with Galois groups of quintics.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(5)). - Thomas Baruchel, Sep 15 2003
All positive integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = -4 together with b(n)=A001519(n), n>=0.
a(n) = L(n,-3)*(-1)^n, where L is defined as in A108299; see also A001519 for L(n,+3).
Inverse binomial transform of A030191. - Philippe Deléham, Oct 04 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Let r = (2n+1), then a(n), n>0 = Product_{k=1..floor((r-1)/2)} (1 + sin^2 k*Pi/r); e.g., a(3) = 29 = (3.4450418679...)*(4.801937735...)*(1.753020396...). - Gary W. Adamson, Nov 26 2008
a(n+1) is the Hankel transform of A001700(n)+A001700(n+1). - Paul Barry, Apr 21 2009
a(n) is equal to the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
Conjecture: for n > 0, a(n) = sqrt(Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k)). - Alex Ratushnyak, May 06 2012
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... . - R. J. Mathar, Aug 10 2012
The continued fraction [a(n); a(n), a(n), ...] = phi^(2n+1), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 05 2013
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 5. - Michel Lagneau, Feb 01 2014
Conjecture: except for the number 3, a(n) are the numbers such that a(n)^2+2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
Comment on the preceding conjecture: It is clear that all a(n) satisfy a(n)^2 + 2 = L(2*(2*n+1)) due to the identity (17 c) of Vajda, p. 177: L(2*n) + 2*(-1)^n = L(n)^2 (take n -> 2*n+1). - Wolfdieter Lang, Oct 10 2014
Limit_{n->oo} a(n+1)/a(n) = phi^2 = phi + 1 = (3+sqrt(5))/2. - Derek Orr, Jun 18 2015
If d[k] denotes the sequence of k-th differences of this sequence, then d[0](0), d[1](1), d[2](2), d[3](3), ... = A048876, cf. message to SeqFan list by P. Curtz on March 2, 2016. - M. F. Hasler, Mar 03 2016
a(n-1) and a(n) are the least phi-antipalindromic numbers (A178482) with 2*n and 2*n+1 digits in base phi, respectively. - Amiram Eldar, Jul 07 2021
Triangulate (hyperbolic) 2-space such that around every vertex exactly 7 triangles touch. Call any 7 triangles having a common vertex the first layer and let the (n+1)-st layer be all triangles that do not appear in any of the first n layers and have a common vertex with the n-th layer. Then the n-th layer contains 7*a(n-1) triangles. E.g., the first layer (by definition) contains 7 triangles, the second layer (the "ring" of triangles around the first layer) consists of 28 triangles, the third layer (the next "ring") consists of 77 triangles, and so on. - Nicolas Nagel, Aug 13 2022
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Steven Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
LINKS
Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
Kasper K. S. Andersen, Lisa Carbone and Diego Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011), Article 11.4.3, page 9.
Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 25.
Nathan D. Cahill, John R. D'Errico and John P. Spence, Complex Factorizations of the Fibonacci and Lucas Numbers, Fibonacci Quarterly, 1(41):13-19, 2003.
L. Carlitz, Problem B-110, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 1 (1967), p. 108; An Infinite Series Equality, Solution to Problem B-110 by the proposer, ibid., Vol. 5, No. 5 (1967), pp. 469-470.
Paul Curtz, A269500, SeqFan list, March 2, 2016.
Murray Elder and Arkadius Kalka, Logspace computations for rigid Garside groups, arXiv preprint arXiv:1310.0933 [math.GR], 2013.
Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, Vol. 5 (2014), pp. 2226-2234.
Alex Fink, Richard K. Guy and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol. 3, No. 2 (2008), pp. 76-114. See Section 13.
Dale Gerdemann, Collision of Digits "Also interesting are the two bisections of the Lucas numbers A005248 (digit minimizer) and A002878 (digit maximizer). I particularly like the multiples of A005248 because I have this image of the two digits piling up on top of each other and then spreading out like waves".
André Gougenheim, About the linear sequence of integers such that each term is the sum of the two preceding Part 1 Part 2, Fib. Quart., Vol. 9, No. 3 (1971), pp. 277-295, 298.
Tian-Xiao He and Louis W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic., Vol. 532 (2017) pp. 25-41, example p 34.
Seong Ju Kim, Ryan Stees and Laura Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.4.
Tanya Khovanova, Recursive Sequences.
Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
D. H. Lehmer, Recurrence formulas for certain divisor functions, Bull. Amer. Math. Soc., Vol. 49, No. 2 (1943), pp. 150-156.
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum, Vol. 19 (2019), pp. 11-16.
Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics, Vol. 340, No. 2 (2017), pp. 160-174.
Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 3.
Serge Perrine, Some properties of the equation x^2=5y^2-4, The Fibonacci Quarterly, Vol. 54, No. 2 (2016) pp. 172-177.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, Vol. 7, No. 5 (2011), pp. 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012), The John Selfridge Memorial Volume.
FORMULA
a(n+1) = 3*a(n) - a(n-1).
G.f.: (1+x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(2*n, sqrt(5)) = S(n, 3) + S(n-1, 3); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 3) = A001906(n+1) (even-indexed Fibonacci numbers).
a(n) ~ phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -1) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = A005248(n+1) - A005248(n) = -1 + Sum_{k=0..n} A005248(k). - Lekraj Beedassy, Dec 31 2002
a(n) = 2^(-n)*A082762(n) = 4^(-n)*Sum_{k>=0} binomial(2*n+1, 2*k)*5^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = (-1)^n*Sum_{k=0..n} (-5)^k*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
From Paul Barry, May 27 2004: (Start)
Both bisection and binomial transform of A000204.
a(n) = Fibonacci(2n) + Fibonacci(2n+2). (End)
Sequence lists the numerators of sinh((2*n-1)*psi) where the denominators are 2; psi=log((1+sqrt(5))/2). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Mar 25 2009
a(n) = A001906(n) + A001906(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = floor(phi^(2n+1)), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 10 2012
a(n) = A014217(2*n+1) = A014217(2*n+2) - A014217(2*n). - Paul Curtz, Jun 11 2013
Sum_{n >= 0} 1/(a(n) + 5/a(n)) = 1/2. Compare with A005248, A001906, A075796. - Peter Bala, Nov 29 2013
a(n) = lim_{m->infinity} Fibonacci(m)^(4n+1)*Fibonacci(m+2*n+1)/ Sum_{k=0..m} Fibonacci(k)^(4n+2). - Yalcin Aktar, Sep 02 2014
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 4, 0, 11, 0, 29, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -1, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
b(n) = (1/2)*((-1)^n - 1)*F(n) + (1 + (-1)^(n-1))*F(n+1), where F(n) is a Fibonacci number. The o.g.f. is x*(1 + x^2)/(1 - 3*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = sqrt(5*F(2*n+1)^2-4), where F(n) = A000045(n). - Derek Orr, Jun 18 2015
For n > 1, a(n) = 5*F(2*n-1) + L(2*n-3) with F(n) = A000045(n). - J. M. Bergot, Oct 25 2015
For n > 0, a(n) = L(n-1)*L(n+2) + 4*(-1)^n. - J. M. Bergot, Oct 25 2015
For n > 2, a(n) = a(n-2) + F(n+2)^2 + F(n-3)^2 = L(2*n-3) + F(n+2)^2 + F(n-3)^2. - J. M. Bergot, Feb 05 2016 and Feb 07 2016
E.g.f.: ((sqrt(5) - 5)*exp((3-sqrt(5))*x/2) + (5 + sqrt(5))*exp((3+sqrt(5))*x/2))/(2*sqrt(5)). - Ilya Gutkovskiy, Apr 24 2016
a(n) = Sum_{k=0..n} (-1)^floor(k/2)*binomial(n-floor((k+1)/2), floor(k/2))*3^(n-k). - L. Edson Jeffery, Feb 26 2018
a(n)*F(m+2n-1) = F(m+4n-2)-F(m), with Fibonacci number F(m), empirical observation. - Dan Weisz, Jul 30 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jul 31 2018
Sum_{n>=0} 1/a(n) = A153416. - Amiram Eldar, Nov 11 2020
a(n) = Product_{k=1..n} (1 + 4*sin(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(5)) * A153387 (Carlitz, 1967). - Amiram Eldar, Feb 05 2022
The continued fraction [a(n);a(n),a(n),...] = phi^(2*n+1), with phi = A001622. - A.H.M. Smeets, Feb 25 2022
a(n) = 2*sinh((2*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
This gives the sequence with 2 1's prepended: b(1)=b(2)=1 and, for k >= 3, b(k) = Sum_{j=1..k-2} (2^(k-j-1) - 1)*b(j). - Neal Gersh Tolunsky, Oct 28 2022 (formula due to Jon E. Schoenfield)
For n > 0, a(n) = 1 + 1/(Sum_{k>=1} F(k)/phi^(2*n*k + k)). - Diego Rattaggi, Nov 08 2023
EXAMPLE
G.f. = 1 + 4*x + 11*x^2 + 29*x^3 + 76*x^4 + 199*x^5 + 521*x^6 + ... - Michael Somos, Jan 13 2019
MAPLE
A002878 := proc(n)
option remember;
if n <= 1 then
op(n+1, [1, 4]);
else
3*procname(n-1)-procname(n-2) ;
end if;
end proc: # R. J. Mathar, Apr 30 2017
MATHEMATICA
a[n_]:= FullSimplify[GoldenRatio^n - GoldenRatio^-n]; Table[a[n], {n, 1, 40, 2}]
a[1]=1; a[2]=4; a[n_]:=a[n]= 3a[n-1] -a[n-2]; Array[a, 40]
LinearRecurrence[{3, -1}, {1, 4}, 41] (* Jean-François Alcover, Sep 23 2017 *)
Table[Sum[(-1)^Floor[k/2] Binomial[n -Floor[(k+1)/2], Floor[k/2]] 3^(n - k), {k, 0, n}], {n, 0, 40}] (* L. Edson Jeffery, Feb 26 2018 *)
a[ n_] := Fibonacci[2n] + Fibonacci[2n+2]; (* Michael Somos, Jul 31 2018 *)
a[ n_]:= LucasL[2n+1]; (* Michael Somos, Jan 13 2019 *)
PROG
(Magma) [Lucas(2*n+1): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
(Haskell)
a002878 n = a002878_list !! n
a002878_list = zipWith (+) (tail a001906_list) a001906_list
-- Reinhard Zumkeller, Jan 11 2012
(PARI) a(n)=fibonacci(2*n)+fibonacci(2*n+2) \\ Charles R Greathouse IV, Jun 16 2011
(PARI) for(n=1, 40, q=((1+sqrt(5))/2)^(2*n-1); print1(contfrac(q)[1], ", ")) \\ Derek Orr, Jun 18 2015
(PARI) Vec((1+x)/(1-3*x+x^2) + O(x^40)) \\ Altug Alkan, Oct 26 2015
(Sage) [lucas_number2(2*n+1, 1, -1) for n in (0..40)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..40], n-> Lucas(1, -1, 2*n+1)[2] ); # G. C. Greubel, Jul 15 2019
(Python)
a002878 = [1, 4]
for n in range(30): a002878.append(3*a002878[-1] - a002878[-2])
print(a002878) # Gennady Eremin, Feb 05 2022
CROSSREFS
Cf. A000204. a(n) = A060923(n, 0), a(n)^2 = A081071(n).
Cf. A005248 [L(2n) = bisection (even n) of Lucas sequence].
Cf. A001906 [F(2n) = bisection (even n) of Fibonacci sequence], A000045, A002315, A004146, A029907, A113224, A153387, A153416, A178482, A192425, A285992 (prime subsequence).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.
Sequence in context: A027970 A027972 A098149 * A341341 A124861 A369844
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
STATUS
approved