[go: up one dir, main page]

login
Search: a324895 -id:a324895
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.
+10
583
1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
OFFSET
0,2
COMMENTS
Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024
FORMULA
a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022
EXAMPLE
For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
MATHEMATICA
b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
PROG
(APL, Dyalog Dialect) A276086 ← { P←47 43 41 37 31 29 23 19 17 13 11 7 5 3 2 ⋄ ×/P*¨P⊤⍵ } ⍝ Antti Karttunen, Feb 17 2024
(PARI) A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
(PARI) A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
(Scheme) (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
(Scheme) (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
(Scheme) (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
(Python)
from sympy import prime
def a(n):
i=0
m=pr=1
while n>0:
i+=1
N=prime(i)*pr
if n%N!=0:
m*=(prime(i)**((n%N)/pr))
n-=n%N
pr=N
return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
(Sage)
def A276086(n):
m=1
i=1
while n>0:
p = sloane.A000040(i)
m *= (p**(n%p))
n = floor(n/p)
i += 1
return (m)
# Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
(Python)
from sympy import nextprime
def a(n):
m, p = 1, 2
while n > 0:
n, r = divmod(n, p)
m *= p**r
p = nextprime(p)
return m
print([a(n) for n in range(74)]) # Peter Luschny, Apr 20 2024
CROSSREFS
Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Aug 21 2016
EXTENSIONS
Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022
STATUS
approved
Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).
+10
159
1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
OFFSET
1,2
COMMENTS
This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015
FORMULA
Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022
EXAMPLE
a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
MATHEMATICA
a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro)
(definec (A108951 n) (if (= 1 n) n (* n (A108951 (A064989 n)))))
;; Antti Karttunen, Jul 21 2014
(Sage)
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
def p(f):
return sharp_primorial(f[0])^f[1]
[prod(p(f) for f in factor(n)) for n in range (1, 51)]
# Giuseppe Coppoletta, Feb 07 2015
(PARI) primorial(n)=prod(i=1, primepi(n), prime(i))
a(n)=my(f=factor(n)); prod(i=1, #f~, primorial(f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015
(Python)
from sympy import primerange, factorint
from operator import mul
def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
def a(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
KEYWORD
mult,easy,nonn
AUTHOR
Paul Boddington, Jul 21 2005
EXTENSIONS
More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020
STATUS
approved
Smallest prime not dividing n.
+10
146
2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2
OFFSET
1,1
COMMENTS
Smallest prime coprime to n.
Smallest k >= 2 coprime to n.
a(#(p-1)) = a(A034386(p-1)) = p is the first appearance of prime p in sequence.
a(A005408(n)) = 2; for n > 2: a(n) = A112484(n,1). - Reinhard Zumkeller, Sep 23 2011
Average value is 2.920050977316134... = A249270. - Charles R Greathouse IV, Nov 02 2013
Differs from A236454, "smallest number not dividing n^2", for the first time at n=210, where a(210)=11 while A236454(210)=8. A235921 lists all n for which a(n) differs from A236454. - Antti Karttunen, Jan 26 2014
LINKS
Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, The American Mathematical Monthly, Vol. 126, No. 1 (2019), pp. 70-73; ResearchGate link.
James Grime and Brady Haran, 2.920050977316, Numberphile video (2020)
Igor Rivin, Geodesics with one self-intersection, and other stories, Advances in Mathematics, Vol. 231, No. 5 (2012), pp. 2391-2412; arXiv preprint, arXiv:0901.2543 [math.GT], 2009-2011.
FORMULA
a(n) = A071222(n-1)+1. [Because the right hand side computes the smallest k >= 2 such that gcd(n,k) = gcd(n-1,k-1) which is equal to the smallest k >= 2 coprime to n] - Antti Karttunen, Jan 26 2014
a(n) = 1 + Sum_{k=1..n}(floor((n^k)/k!)-floor(((n^k)-1)/k!)) = 2 + Sum_{k=1..n} A001223(k)*( floor(n/A002110(k))-floor((n-1)/A002110(k)) ). - Anthony Browne, May 11 2016
a(n!) = A151800(n). - Anthony Browne, May 11 2016
a(2k+1) = 2. - Bernard Schott, Jun 03 2019
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A249270. - Amiram Eldar, Oct 29 2020
a(n) = A000040(A257993(n)) = A020639(A276086(n)) = A276086(n) / A324895(n). - Antti Karttunen, Apr 24 2022
a(n) << log n. For every e > 0, there is some N such that for all n > N, a(n) < (1 + e)*log n. - Charles R Greathouse IV, Dec 03 2022
EXAMPLE
a(60) = 7, since all primes smaller than 7 divide 60 but 7 does not.
MAPLE
f:= proc(n) local p;
p:= 2;
while n mod p = 0 do p:= nextprime(p) od:
p
end proc:
map(f, [$1..100]); # Robert Israel, May 18 2016
MATHEMATICA
Table[k := 1; While[Not[GCD[n, Prime[k]] == 1], k++ ]; Prime[k], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
With[{prs=Prime[Range[10]]}, Flatten[Table[Select[prs, !Divisible[ n, #]&, 1], {n, 110}]]] (* Harvey P. Dale, May 03 2012 *)
PROG
(Haskell)
a053669 n = head $ dropWhile ((== 0) . (mod n)) a000040_list
-- Reinhard Zumkeller, Nov 11 2012
(PARI) a(n)=forprime(p=2, , if(n%p, return(p))) \\ Charles R Greathouse IV, Nov 20 2012
(Scheme) (define (A053669 n) (let loop ((i 1)) (cond ((zero? (modulo n (A000040 i))) (loop (+ i 1))) (else (A000040 i))))) ;; Antti Karttunen, Jan 26 2014
(Python)
from sympy import nextprime
def a(n):
p = 2
while True:
if n%p: return p
else: p=nextprime(p) # Indranil Ghosh, May 12 2017
(Python)
# using standard library functions only
import math
def a(n):
k = 2
while math.gcd(n, k) > 1: k += 1
return k # Ely Golden, Nov 26 2020
CROSSREFS
One more than A071222(n-1).
KEYWORD
nonn,nice,easy
AUTHOR
Henry Bottomley, Feb 15 2000
EXTENSIONS
More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000 and James A. Sellers, Feb 22 2000
Entry revised by David W. Wilson, Nov 25 2006
STATUS
approved
Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).
+10
146
0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
OFFSET
1,3
COMMENTS
Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024
FORMULA
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)
MATHEMATICA
nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A276085 n) (cond ((= 1 n) (- n 1)) (else (+ (* (A067029 n) (A002110 (+ -1 (A055396 n)))) (A276085 (A028234 n))))))
(PARI) A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); }; \\ Antti Karttunen, Mar 15 2021, Jun 23 2024
(Python)
from sympy import primorial, primepi, factorint
def a002110(n):
return 1 if n<1 else primorial(n)
def a(n):
f=factorint(n)
return sum(f[i]*a002110(primepi(i) - 1) for i in f)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017
CROSSREFS
A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8: A003159, A339746, A369002, A373140, A373138.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 21 2016
EXTENSIONS
Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024
STATUS
approved
The largest proper divisor of the primorial base exp-function, reduced modulo 4.
+10
8
1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1
OFFSET
0,4
COMMENTS
All terms are odd (1 or 3) because there can be at most one instance of prime factor 2 in terms of A276086, as it is a permutation of A048103.
Sequence A353487 interleaved with its right shifted version A353517 (= A353487(n-1)). Follows from the lemma below.
Lemma: for all n >= 0, a((2*n)+1) = a((2*n)+2). Because A276086(2n+1) = 2 * A276086(2n) and a(n) = A032742(A276086(n)) mod 4, it follows that a(2n+1) = A276086(2n) mod 4 = A353487(n). However, in general it does not hold as such that A324895((2*n)+2) = A276086(2*n), although in modulo 4 this equation holds, which can be seen by considering how the possible carry will propagate to the left in the primorial base system A049345. Consider first any even x which is a multiple of 6 or of the form 6k+2, with A049345(x) ending with either two zeros or as "...10". Adding 2 to x means that A049345(2+x) now ends either as "...10" or as "...20", and then A276086(2+x) = 3*A276086(x), with 3 the smallest prime factor present, so when it is eliminated by A324895, we are left with A276086(x) again. Then consider even numbers whose primorial expansion ends as "...20", but the third digit from the right is less than 4. E.g., 10 (= "120") or 16 (= "220") or 34 (= "1020"). Adding 2 to such numbers will change the 2 at the penultimate position to zero, and increment the digit at the third rightmost position by one. When mapped with A276086 this means that 9 (= 3^2) is eliminated, and one extra instance of 5 is multiplied to the prime factorization of the product form. However, this extra 5 will be now the smallest prime factor, so again it will be eliminated when we take the largest proper divisor as A324895 does. So in these cases A324895(x+2) = A276086(x)/9. If the third digit from the right is also "full", but the fourth digit is < 6 (i.e., the primorial expansion ends as "..420" but not as "..6420", e.g., numbers like 28, 58, 88, 118, 148, etc.), then A324895(x+2) = A276086(x)/5625, where 5625 = (3^2)*(5^4). Apart from the least significant digit at right, all the full digits in primorial base system that are changed to zeros by the propagating carry are even (because all primes are odd after 2), so when mapped by A276086 they all correspond to odd square factors that will be eliminated. But all odd squares are of the form 4m+1, so their elimination does not affect the result when the product is reduced modulo 4, from which the stated lemma follows. - Minor corrections from Antti Karttunen, Dec 04 2022
FORMULA
a(n) = A010873(A324895(n)).
a(n) = A353490(A276086(n)).
For all n >= 0, a(2*n) = a((2*n)-1) for all n >= 1. [See the lemma in comments]
For all n >= 0, a(2n+1) = A353487(n) and a(2n) = A353517(n) [= A353487(n-1) for n > 0].
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A353516(n) = (A324895(n)%4);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 24 2022
STATUS
approved
Largest proper divisor of A324886(n).
+10
4
1, 1, 1, 3, 1, 5, 1, 5, 7, 7, 1, 125, 1, 11, 16807, 75, 1, 245, 1, 343, 161051, 13, 1, 175, 102487, 17, 11, 1331, 1, 26411, 1, 7, 371293, 19, 3293331899, 300125, 1, 23, 1419857, 11, 1, 13, 1, 2197, 161051, 29, 1, 343, 82055753, 73525096183, 2476099, 4913, 1, 605, 634933, 19487171, 6436343, 31, 1, 65219, 1, 37, 265837, 147
OFFSET
1,4
FORMULA
a(n) = A032742(A324886(n)) = A324895(A108951(n)).
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 30 2019
STATUS
approved
The largest proper divisor of A276086(2*n) reduced modulo 4, where A276086(n) the primorial base exp-function.
+10
4
1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1
OFFSET
0,3
FORMULA
a(n) = A353516(2*n) = A010873(A324895(2*n)).
For n >= 1, a(n) = (A353487(n) * A353527(n)) mod 4.
For n >= 1, a(n) = A353487(n-1). [See A353516 for a proof]
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A353517(n) = (A324895(2*n)%4);
CROSSREFS
Even bisection of A353516. Sequence A353487 shifted one term right.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 24 2022
STATUS
approved
Largest difference between consecutive divisors of A276086(n), where A276086 is the primorial base exp-function.
+10
4
0, 1, 2, 3, 6, 9, 4, 5, 10, 15, 30, 45, 20, 25, 50, 75, 150, 225, 100, 125, 250, 375, 750, 1125, 500, 625, 1250, 1875, 3750, 5625, 6, 7, 14, 21, 42, 63, 28, 35, 70, 105, 210, 315, 140, 175, 350, 525, 1050, 1575, 700, 875, 1750, 2625, 5250, 7875, 3500, 4375, 8750, 13125, 26250, 39375, 42, 49, 98, 147
OFFSET
0,3
FORMULA
a(n) = A060681(A276086(n)).
a(n) = A276086(n) - A324895(n).
For n >= 1, a(n) = A276086(n) - (A276086(n) / A053669(n)).
When n > 0 and A276084(n) is:
< 2 (i.e., when n is not a multiple of 6), then a(n) = A276086(n-1),
2 (n is multiple of 6, but not of 30), then a(n) = 2*A276086(n-5),
3 (multiple of 30, but not of 210), then a(n) = A276086(n-27),
4 (multiple of 210, but not of 2310), then a(n) = A276086(n-203),
5 (multiple of 2310, but not of 30030), then a(n) = 2*A276086(n-2307),
6 (multiple of 30030, but not of 510510), then a(n) = 8*A276086(n-30029),
7 (multiple of 510510, but not of 9699690), then a(n) = A276086(n-510505),
8 (multiple of 9699690, but not of A002110(9)), then a(n) = A276086(n-9699479).
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A060681(n) = (n-A032742(n));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
(PARI)
A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
A358764(n) = if(!n, n, if(n%6, A276086(n-1), my(p=A053669(n)); ((p-1)/p)*A276086(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 02 2022
STATUS
approved

Search completed in 0.018 seconds