[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A276085 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).
(history; published version)
#77 by Michael De Vlieger at Wed Nov 13 13:53:22 EST 2024
STATUS

proposed

approved

#76 by Antti Karttunen at Wed Nov 13 10:28:03 EST 2024
STATUS

editing

proposed

#75 by Antti Karttunen at Wed Nov 13 09:23:12 EST 2024
CROSSREFS

Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.

#74 by Antti Karttunen at Wed Nov 13 08:25:46 EST 2024
#73 by Antti Karttunen at Mon Nov 11 20:52:22 EST 2024
PROG

(PARI) A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); }; \\ Antti Karttunen, Mar 15 2021, Jun 23 2024

CROSSREFS

Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27: A003159, A339746, A369002, A373140, A373138, A377872.

#72 by Antti Karttunen at Mon Nov 11 20:50:37 EST 2024
PROG

(PARI) A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024

STATUS

approved

editing

#71 by Michael De Vlieger at Sun Jun 23 10:32:36 EDT 2024
STATUS

proposed

approved

#70 by Antti Karttunen at Sun Jun 23 07:38:23 EDT 2024
STATUS

editing

proposed

#69 by Antti Karttunen at Sun Jun 23 04:07:27 EDT 2024
PROG

(PARI) A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); }; \\ _Antti Karttunen_, Mar 15 2021, Jun 23 2024

A002110(n) = prod(i=1, n, prime(i));

A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; \\ Antti Karttunen, Mar 15 2021

(PARI) A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); }; \\ Antti Karttunen, Jun 23 2024

#68 by Antti Karttunen at Sun Jun 23 03:57:01 EDT 2024
PROG

(PARI) A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); }; \\ Antti Karttunen, Jun 23 2024