[go: up one dir, main page]

login
A328404
The length of primorial base expansion (number of significant digits) of A276086(n), where A276086(n) converts primorial base expansion of n into its prime product form.
6
1, 2, 2, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 7, 6, 6, 6, 7
OFFSET
0,2
FORMULA
a(n) = A235224(A276086(n)) = A061395(A276087(n)).
For all n, a(A143293(n-1)) = n+1.
For all n, A000040(a(n)) > A328389(n).
MATHEMATICA
Block[{b = MixedRadix[Reverse@ Prime@ Range@ 120]}, Array[IntegerLength[Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[#, b], b] &, 105, 0]] (* Michael De Vlieger, Oct 17 2019 *)
PROG
(PARI)
A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
CROSSREFS
Cf. A328402 (number of times each n occurs in this sequence).
Sequence in context: A332252 A238268 A194883 * A175453 A014499 A055778
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 16 2019
STATUS
approved