[go: up one dir, main page]

login
A324351
Square array read by antidiagonals: A(x,y) is the result from writing x and y in primorial base (A049345) and starting from their least significant ends, always choosing a minimal digit from each digit position, and converting back to decimal.
6
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 1, 0, 3, 4, 3, 0, 1, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 2, 1, 0, 5, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 0, 0, 0, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 0, 0, 0, 1, 0, 3, 4, 3, 6, 7, 6, 3, 4, 3, 0, 1, 0
OFFSET
0,13
FORMULA
A(x,y) = A276085(A324350(x,y)) = A276085(gcd(A276086(x), A276086(y))).
EXAMPLE
The array A begins:
0 1 2 3 4 5 6 7 8 9 10 11 12
x/y ------------------------------------------------------
0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1: 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
2: 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, ...
3: 0, 1, 2, 3, 2, 3, 0, 1, 2, 3, 2, 3, 0, ...
4: 0, 0, 2, 2, 4, 4, 0, 0, 2, 2, 4, 4, 0, ...
5: 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, ...
6: 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, ...
7: 0, 1, 0, 1, 0, 1, 6, 7, 6, 7, 6, 7, 6, ...
8: 0, 0, 2, 2, 2, 2, 6, 6, 8, 8, 8, 8, 6, ...
9: 0, 1, 2, 3, 2, 3, 6, 7, 8, 9, 8, 9, 6, ...
10: 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 6, ...
11: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 6, ...
12: 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 12, ...
etc.
In primorial base, 5 is written as "21" (as 5 = 2*2 + 1*1) and 10 is written as "120" (as 10 = 1*6 + 2*2 + 0*1). Aligning them digit by digit (from the least significant end), and then always choosing a lesser digit leaves us with digits "020", which is 4 written in primorial base as 2*2 + 0*1 = 4, thus A(5,10) = A(10,5) = 4.
PROG
(PARI)
up_to = 65703; \\ = binomial(362+1, 2)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A324351sq(row, col) = A276085(gcd(A276086(row), A276086(col)));
A324351list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, if(i++ > up_to, return(v)); v[i] = A324351sq(a-col, col))); (v); };
v324351 = A324351list(up_to);
A324351(n) = v324351[1+n]; \\ Antti Karttunen, Feb 25 2019
CROSSREFS
Cf. A001477 (central diagonal), A002110, A049345, A276085, A276086, A324350.
Sequence in context: A073253 A004198 A350673 * A116402 A093323 A106278
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Feb 25 2019
STATUS
approved