[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).
159

%I #115 Aug 04 2022 05:54:46

%S 1,2,6,4,30,12,210,8,36,60,2310,24,30030,420,180,16,510510,72,9699690,

%T 120,1260,4620,223092870,48,900,60060,216,840,6469693230,360,

%U 200560490130,32,13860,1021020,6300,144,7420738134810,19399380,180180,240,304250263527210,2520

%N Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

%C This sequence is a permutation of A025487.

%C And thus also a permutation of A181812, see the formula section. - _Antti Karttunen_, Jul 21 2014

%C A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), _Giuseppe Coppoletta_, Feb 28 2015

%H Amiram Eldar, <a href="/A108951/b108951.txt">Table of n, a(n) for n = 1..2370</a> (terms 1..256 from Antti Karttunen)

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>.

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>.

%F Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...

%F Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [_Franklin T. Adams-Watters_, Jun 24 2009; typos corrected by _Antti Karttunen_, Jul 21 2014]

%F From _Antti Karttunen_, Jul 21 2014: (Start)

%F a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).

%F a(n) = n * A181811(n).

%F a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]

%F a(n) = A181812(A048673(n)).

%F Other identities:

%F A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]

%F A071178(a(n)) = A071178(n). [And also its exponent.]

%F a(2^n) = 2^n. [Fixes the powers of two.]

%F A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]

%F (End)

%F From _Antti Karttunen_, Nov 19 2019: (Start)

%F Further identities:

%F a(A307035(n)) = A000142(n).

%F a(A003418(n)) = A181814(n).

%F a(A025487(n)) = A181817(n).

%F a(A181820(n)) = A181822(n).

%F a(A019565(n)) = A283477(n).

%F A001221(a(n)) = A061395(n).

%F A001222(a(n)) = A056239(n).

%F A181819(a(n)) = A122111(n).

%F A124859(a(n)) = A181821(n).

%F A085082(a(n)) = A238690(n).

%F A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)

%F A000188(a(n)) = A329602(n). (square root of the greatest square divisor)

%F A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)

%F A005361(a(n)) = A329382(n). (product of exponents of prime factors)

%F A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)

%F A000005(a(n)) = A329605(n). (number of divisors)

%F A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)

%F A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)

%F A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)

%F A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)

%F A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)

%F A324580(a(n)) = A324887(n).

%F A276150(a(n)) = A324888(n). (digit sum in primorial base)

%F A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)

%F A243055(a(n)) = A329343(n).

%F A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)

%F A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)

%F A328114(a(n)) = A329344(n). (maximal digit in primorial base)

%F A062977(a(n)) = A325226(n).

%F A097248(a(n)) = A283478(n).

%F A324895(a(n)) = A324896(n).

%F A324655(a(n)) = A329046(n).

%F A327860(a(n)) = A329047(n).

%F A329601(a(n)) = A329607(n).

%F (End)

%F a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - _Antti Karttunen_, Dec 29 2019

%F From _Antti Karttunen_, Jul 09 2021: (Start)

%F a(n) = A346092(n) + A346093(n).

%F a(n) = A346108(n) - A346109(n).

%F a(A342012(n)) = A004490(n).

%F a(A337478(n)) = A336389(n).

%F A336835(a(n)) = A337474(n).

%F A342002(a(n)) = A342920(n).

%F A328571(a(n)) = A346091(n).

%F A328572(a(n)) = A344592(n).

%F (End)

%F Sum_{n>=1} 1/a(n) = A161360. - _Amiram Eldar_, Aug 04 2022

%e a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24

%e a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).

%t a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* _Jean-François Alcover_, Feb 24 2015 *)

%t Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* _Michael De Vlieger_, Mar 18 2017 *)

%o (Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro)

%o (definec (A108951 n) (if (= 1 n) n (* n (A108951 (A064989 n)))))

%o ;; _Antti Karttunen_, Jul 21 2014

%o (Sage)

%o def sharp_primorial(n): return sloane.A002110(prime_pi(n))

%o def p(f):

%o return sharp_primorial(f[0])^f[1]

%o [prod(p(f) for f in factor(n)) for n in range (1,51)]

%o # _Giuseppe Coppoletta_, Feb 07 2015

%o (PARI) primorial(n)=prod(i=1,primepi(n),prime(i))

%o a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ _Charles R Greathouse IV_, Jun 28 2015

%o (Python)

%o from sympy import primerange, factorint

%o from operator import mul

%o def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])

%o def a(n):

%o f = factorint(n)

%o return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])

%o print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, May 14 2017

%Y Cf. A319626, A329900 (left inverses).

%Y Cf. A034386, A002110, A025487, A048673, A064216, A064989, A085082, A122111, A124859, A161360, A181811, A181812, A181814, A181815, A181817, A181819, A181822, A238690, A283477, A283478, A307035, A324886, A324887, A324888, A324896, A325226, A329040, A329046, A329047, A329344, A329348, A329349, A329378, A329382, A329600, A329602, A329605, A329607, A329615, A329616, A329617, A329619, A329622, A319627, A329647, A331292, A337474, A346108, A346109, A344698, A344699.

%K mult,easy,nonn

%O 1,2

%A _Paul Boddington_, Jul 21 2005

%E More terms computed by _Antti Karttunen_, Jul 21 2014

%E The name of the sequence was changed for more clarity, in accordance with the above remark of _Franklin T. Adams-Watters_ (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - _Giuseppe Coppoletta_, Feb 28 2015

%E Name "Primorial inflation" (coined by _Matthew Vandermast_ in A181815) prefixed to the name by _Antti Karttunen_, Jan 14 2020