OFFSET
0,5
COMMENTS
T(n,k)=(k)^(k-1)*(n-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.
There are many binomial decompositions of n^n, some with all terms positive like this one (see A243203). However, for every n, the terms corresponding to k=1..n in this one are exceptionally similar in value (at least on log scale).
LINKS
Stanislav Sykora, Table of n, a(n) for rows 0..100
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.
EXAMPLE
First rows of the triangle, all summing up to n^n:
1,
0, 1,
0, 2, 2,
0, 12, 6, 9,
0, 108, 48, 36, 64,
0, 1280, 540, 360, 320, 625,
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100, -1);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stanislav Sykora, Jun 22 2014
STATUS
approved