Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 25 2014 09:42:32
%S 1,0,1,0,2,2,0,12,6,9,0,108,48,36,64,0,1280,540,360,320,625,0,18750,
%T 7680,4860,3840,3750,7776,0,326592,131250,80640,60480,52500,54432,
%U 117649,0,6588344,2612736,1575000,1146880,945000,870912,941192,2097152
%N Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
%C T(n,k)=(k)^(k-1)*(n-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.
%C There are many binomial decompositions of n^n, some with all terms positive like this one (see A243203). However, for every n, the terms corresponding to k=1..n in this one are exceptionally similar in value (at least on log scale).
%H Stanislav Sykora, <a href="/A244137/b244137.txt">Table of n, a(n) for rows 0..100</a>
%H S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.004">An Abel's Identity and its Corollaries</a>, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.
%e First rows of the triangle, all summing up to n^n:
%e 1,
%e 0, 1,
%e 0, 2, 2,
%e 0, 12, 6, 9,
%e 0, 108, 48, 36, 64,
%e 0, 1280, 540, 360, 320, 625,
%o (PARI) seq(nmax, b)={my(v, n, k, irow);
%o v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
%o for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
%o for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n, k); ); );
%o return(v); }
%o a=seq(100,-1);
%Y Cf. A243203, A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244138, A244139, A244140, A244141, A244142, A244143.
%K nonn,tabl
%O 0,5
%A _Stanislav Sykora_, Jun 22 2014